Side header image

PhD position, Sol-gel chemistry to control morphology and porosity of actinide oxide feeds for electroreduction - 2019BAPFTIEF038

The ART Research Group at the faculty of Applied Engineering is seeking to fill a

PhD position in the area of sol-gel chemistry to control morphology and porosity of actinide oxide feeds for electroreduction

under supervision of Prof Tom Breugelmans (UA) and Bart Geboes (SCK). This PhD is a collaboration between the research group Advanced Reactor Technology (ART) and the Expert Group Radiochemistry from the Belgian Nuclear Research Center. Please visit the websites of the groups:

The global energy demand is currently increasing due to an exponentially growing world population and ever expanding economic growth. Nuclear energy is an important base-load power source that can fulfil this demand with a limited impact on carbon emissions to the environment. The accumulation of highly radiotoxic spent nuclear fuel however is a major disadvantage. The environmental footprint of a nuclear fuel cycle with recycling of fissile material is much lower because of savings on natural uranium resources and a significant decrease in required final repository volume. Several reactor concepts under development in the Generation IV international forum provide the ability to close the nuclear fuel cycle by reusing the majority of fertile and fissile elements as well as burn the long-lived actinides produced in the nuclear fuel. However, reprocessing the spent nuclear fuel from these Gen IV fast reactors will be more challenging considering the higher radiation dose and number of transuranium elements to recover.

Pyroprocessing is a combination of electrochemical operations for the reprocessing of spent nuclear fuels in high temperature molten salt media.  Deployed as a batch process, it can be designed with a small footprint and can be implemented in a colocation system with several reactors in one site, contrary to a centralized aqueous reprocessing facility with large throughput. Pyroprocessing is highly radiation resistant and generally consists of several sub-processes: (i) head end treatment, (ii) electroreduction and (iii) electrorefining. In the electroreduction step the oxide feed is loaded in a high temperature LiCl:Li2O melt. Applying a current between the cathode (oxide feed) and inert anode reduces the feed material to its metallic form. The majority of highly active fission products is dissolved in the molten salt, reducing the heat and radiation of the metal product. Finally, during the electrorefining the metallic fuel is loaded in an electrorefiner containing a LiCl:KCl melt. The fuel is electrochemically dissolved by applying a specific potential between the fuel containing anode and a sequence of cathodes to recover a fraction rich in uranium and one in transuranium elements.

Although the advantages of pyroprocessing are clear, improvements in faradaic efficiency and processing time are still needed for its upscaling and widespread employment. These improvements are hindered by a lack of fundamental understanding of the processes at play. Precise mass transfer control that can be applied in this manner is crucial in gathering this fundamental information.

The main objective in this research project is to reduce reaction time and improve the faradaic efficiency of the electroreduction process of actinide oxides in molten salt media to facilitate its future industrial application in pyroprocessing. To achieve this objective the mass transfer rate of active species involved in the electrochemical reactions needs to be understood and controlled.

Profile and requirements

  • You hold a master degree in sciences, industrial sciences of sciences in engineering.
  • You need to have a background in Chemistry.
  • You can submit outstanding academic results.
  • You publish scientific articles related to the research project of the assignment.
  • You are motivated and accept the challenge to obtain a PhD in sciences and/or engineering.
  • Your academic qualities comply with the requirements stipulated in the university’s policy.
  • You are quality-oriented, conscientious, creative and cooperative.

We offer

  • a doctoral scholarship for a period of 1 year, renewable for 3 years after positive evaluation for the PhD candidate.;
  • a competitive salary;
  • selection dates and start date:
    First step: selection based on application file: April 26, 2019
    Second step: oral presentation on the research topic: May 27 & 28, 2019
    Notification final result: June 30, 2019
    Standard start date: October 1, 2019

How to apply?

  • Please submit your motivation letter, CV, summary of your Master and/or PhD thesis, a list and grades of the courses that you took during your studies, and names of 2 professional referees as one single PDF file uploaded on the following Application Submission page before March 27 2019. Applications will be considered as and when they are received and this position will be filled as soon as possible.
  • For questions about the profile and the description of duties, please contact Bart Geboes:, +32 (0)14 33 82 08 or Tom Breugelmans:, +32 (0)3 265 23 70.

The University of Antwerp is a family friendly organization, with a focus on equal opportunities and diversity. Our HR-policy for researchers was awarded by the European Commission with the quality label HR Excellence in research.

We support the Science4Refugees initiative and encourage asylum-seeking, refugee scientists and researchers to apply for a job at the University of Antwerp.