If needed, copies of publications can be obtained upon simple request to: karel.venken@uantwerpen.be or priyanka.shaw@uantwerpen.be

727.

Correction: From the Birkeland–Eyde process towards energy-efficient plasma-based NOx synthesis: A techno-economic analysis.

K.H.R. Rouwenhorst, F. Jardali, A. Bogaerts and L. Lefferts

Energy Environ. Sci., 16, 6170 (2023)

726.

Injectable plasma-treated alginate hydrogel for oxidative stress delivery to induce immunogenic cell death in osteosarcoma.

M. Živanic, A. Espona-Noguera, H. Verswyvel, E. Smits, A. Bogaerts, A. Lin and C. Canal

Adv. Functional Mater., 2023, 231205 (2023)

725.

Avoiding solid carbon deposition in plasma-based dry reforming of methane.

O. Biodo, C.F.A.M. van Deursen, A. Hughes, A. van de Steeg, W. Bongers, M.C.M. van de Sanden, G. van Rooij and A. Bogaerts

Green Chemistry, 25, 10485 (2023)

723.

Special issue on “Dielectric barrier discharges and their applications” in Commemoration of the 20th anniversary of Dr. Ulrich Kogelschatz’s work.

A. Bogaerts

Plasma Chem. Plasma Process., 43, 1281-1285 (2023)

722.

Plasma-assisted dry reforming of CH4: How small amounts of O2 addition can drastically enhance the oxygenate production-experiments and insights from plasma chemical kinetics modeling.

S. Li, J. Sun, Y. Gorbanev, K. van’t Veer, B. Loenders, Y. Yi, T. Kenis, Qi Chen and A. Bogaerts

ACS Sustainable Chem. Eng., 11, 15373−15384 (2023) and supporting information

716.

Plasma-based CO2 conversion: How to correctly analyze the performance?

B. Wanten, R. Vertongen, R. De Meyer and A. Bogaerts

J. Energy Chem., 86, 180-196 (2023) and supplementary information I and supplementary information II

713.

Is a catalyst always beneficial in plasma catalysis?  Insights from the many physical and chemical interactions.

B. Loenders, R. Michiels and A. Bogaerts

J. Energy Chem., 85, 501-533 (2023) and supplementary information

708.

How important is reactor design for CO2 conversion in warm plasmas?

R. Vertongen and  A. Bogaerts

J. CO2 Util., 72, 102510 (2023) and supporting information

701.

Challenges in unconventional catalysis.

A. Bogaerts, G. Centi, V. Hessel and E. Rebrov​

Catalysis Today, 420, 114180 (2023)

699.

​Plasma-catalytic ammonia synthesis: Packed catalysts act as plasma modifiers.

C. Ndayirinde, Y. Gorbanev, R.-G. Ciocarlan, R. De Meyer, A. Smets, E. Vlasov, S. Bals, P. Cool and A. Bogaerts

Catalysis Today, 419, 114156 (2023) and supporting information

696.

Inactivation of SARS-CoV‑2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection.

M. Sahun, A. Privat-Maldonado, A. Lin, N. De Roeck, L. Van der Heyden, M. Hillen, J. Michiels, G. Steenackers, E. Smits, K.K. Ariën, P.G. Jorens, P. Delputte, and A. Bogaerts

ACS Sustain. Chem. Eng., 11, 5206-5215 (2023)

692.

Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas.

S. Van Alphen, A. Hecimovic, C.K. Kiefer, U. Fantz, R. Snyders and A. Bogaerts​

Chem. Eng. J., 462, 142217 (2023) and supporting information

691.

Methane coupling in nanosecond pulsed plasmas: Correlation between temperature and pressure and effects on product selectivity.

E. Morais, E. Delikonstantis, M. Scapinello, G. Smith, G.D. Stefanidis and A. Bogaerts

Chem. Eng. J., 462, 142227 (2023) and supporting information​​

688.

Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma.

A. Lin, M. Sahun, E. Biscop, H. Verswyvel, J. De Waele, J. De Backer, C. Theys, B. Cuypers, K. Laukens, W. Vanden Berghe, E. Smits and A. Bogaerts
Drug Resi. Ups., 67, 100914 (2023) and supporting information

687.

Nitrogen fixation by an arc plasma at elevated pressure to increase the energy efficiency and production rate of NOx.

I. Tsonev, C. O’Modhrain, A. Bogaerts and Y. Gorbanev

ACS Sustainable Chem. Eng., 11, 1888−1897 (2023) and supporting information

677.​​

Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma.

S. Kelly, C. Verheyen, A. Cowley and A. Bogaerts

Chem, 8, 2797–2816 (2022)​ and its supporting information

671.

​The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies.
M.C. Oliveira, H. Verswyvel, E. Smits, R.M. Cordeiro, A. Bogaerts and A. Lin
Redox Biology57 102503 (2022)

663.

The 2022 Plasma Roadmap: Low temperature plasma science and technology.

I. Adamovich, S. Agarwal, E. Ahedo, L.L. Alves, S. Baalrud, N. Babaeva, A. Bogaerts, A. Bourdon, P.J. Bruggeman, C. Canal, E.H. Choi, S. Coulombe, Z. Donkó, D.B. Graves, S. Hamaguchi, D. Hegemann, M. Hori, H.-H. Kim, G.M.W. Kroesen, M.J. Kushner, A. Laricchiuta, X. Li, T.E. Magin, S. Mededovic Thagard, V. Miller, A.B. Murphy, G.S. Oehrlein, N. Puac, R.M. Sankaran, S. Samukawa, M. Shiratani, M. Šimek, N. Tarasenko, K. Terashima, E. Thomas Jr., J. Trieschmann, S. Tsikata, M.M. Turner, I.J. van der Walt, M.C.M. van de Sanden and T. von Woedtke

J. Phys. D: Appl. Phys.55, 373001 (2022)

661.

Foundations of plasma catalysis for environmental applications.
A. Bogaerts, E.C. Neyts, O. Guaitella and A.B. Murphy
Plasma Sources Sci. Technol.31, 053002 (2022)

657.

Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor.

S. Van Alphen, H. Ahmadi Eshtehardi, C. O’Modhrain, J. Bogaerts, H. Van Poyer, J. Creel, M.-P. Delplancke, R. Snyders and A. Bogaerts

Chem. Eng. J.443, 136529 (2022) and its supporting information

656.

The effect of local non-thermal plasma therapy on the cancerimmunity cycle in a melanoma mouse model.

A. Lin, J. De Backer, D. Quatannens, B. Cuypers, H. Verswyvel, E. Cardenas De La Hoz, B. Ribbens, V. Siozopoulou, J. Van Audenaerde, E. Marcq, F. Lardon, K. Laukens, S. Vanlanduit, E. Smits and A. Bogaerts

Bioeng. Transl Med.2022, e10314 (2022) and its supporting information.​

655.

Energy-efficient small-scale ammonia synthesis process with plasma-enabled nitrogen oxidation and catalytic reduction of adsorbed NOx.

L.Hollevoet, E. Vervloessem, Y. Gorbanev, A. Nikiforov, N. De Geyter, A. Bogaerts and J.A. Martens

ChemSusChem, 2022, e202102526 (2022) and its supporting information

654.

Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream.
F. Girard-Sahun, O. Biondo, G. Trenchev, G. van Rooij and A. Bogaerts
Chem. Eng. Jour., 442, 136268 (2022) and its supporting information

650.

Sustainable NOx production from air in pulsed plasma: elucidating the chemistry behind the low energy consumption.
E. Vervloessem, Y. Gorbanev, A. Nikiforov, N. De Geyter and A. Bogaerts
Green Chem., 24, 916 (2022) and its supporting information

647.

Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance.
B. Wanten, S. Maerivoet, C. Vantomme, J. Slaets, G. Trenchev and A. Bogaerts
J. CO2 Util.,56, 101869 (2022) and its supporting information.

646.

Oxygenate production from plasma-activated reaction of CO2 and ethane.
A.N. Biswas, L R. Winter, B. Loenders, Z. Xie, A. Bogaerts and J.G. Chen
ACS Energy Lett.7, 236-241 (2022) and its supporting information

643.

Nitrogen fixation in an electrode-free microwave plasma.
S. Kelly and A. Bogaerts
Joule5, 3006-3030 (2021) and its supporting information.

638.

Multiscale modeling of plasma–surface interaction - General picture and a case study of Si and SiO2 etching by fluorocarbon-based plasmas.
P. Vanraes, S.P. Venugopalan and A. Bogaerts
Appl. Phys. Rev.8, 041305 (2021) (article selected by the editors as Featured Article, as one of the journal's best articles)
Copyright (2021) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://aip.scitation.org/doi/10.1063/5.0058904

637.

Plasma catalysis for ammonia synthesis: A microkinetic modeling study on the contributions of Eley−Rideal reactions.
Y. Engelmann, K. van ’t Veer, Y. Gorbanev, E.C. Neyts, W. F. Schneider and A. Bogaerts
ACS Sust. Chem. Eng.9, 13151−13163 (2021) and its supporting information.

628.

Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling.
Y. Yi, S. Li, Z. Cui, Y. Hao, Y. Zhang, L. Wang, P. Liu, X. Tu, X. Xu, H. Guo and A. Bogaerts
Appl. Cat. B: Env., 296, 120384 (2021)

627.

From the Birkeland–Eyde process towards energy-efficient plasma-based NOX synthesis: a techno-economic analysis.
K.H.R. Rouwenhorst, F. Jardali, A. Bogaerts and L. Lefferts
Energy Environ. Sci., 14, 2520 (2021)  Correction published in 2023: Energy Environ. Sci., 16, 6170 (2023)

622.

Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy.
M. Yusupov, A. Privat-Maldonado, R.M. Cordeiro, H. Verswyvel, P. Shaw, J. Razzokov, E. Smits and A. Bogaerts
Redox Biology43, 101968 (2021)

619.

Sustainable gas conversion by gliding arc plasmas: A new modelling approach for reactor design improvement.
S. Van Alphen, F. Jardali, J. Creel, G. Trenchev, R. Snyders and A. Bogaerts
Sust. Energy Fuels5, 1786 (2021)

611.

Oxidation of innate immune checkpoint CD47 on cancer cells with non-thermal plasma.
A. Lin, J. Razzokov, H. Verswyvel, A. Privat-Maldonado, J. De Backer, M. Yusupov, E. Cardenas De La Hoz, P. Ponsaerts, E. Smits and A. Bogaerts
Cancers13, 579 (2021)

609.

NOx production in a rotating gliding arc plasma: Potential avenue for sustainable nitrogen fixation.
F. Jardali, S. Van Alphen, J. Creel, H.A. Eshtehardi, M. Axelsson, R. Ingels, R. Snyders and A. Bogaerts
Green Chem.23,1748 (2021) and its supporting information

607.

Spatially and temporally non-uniform plasmas: Microdischarges from the perspective of molecules in a packed bed plasma reactor.
K. van ‘t Veer, S. van Alphen, A. Remy, Y. Gorbanev, N. De Geyter, R. Snyders, F. Reniers and A Bogaerts
J. Phys. D: Appl. Phys.54, 174002 (2021)

604.

On the kinetics and equilibria of plasma-based dry reforming of methane.
Y. Uytdenhouwen, K.M. Bal, E.C. Neyts, V. Meynen, P. Cool and A. Bogaerts
Chem. Eng. J., 405 126630 (2021)

603.

How gas flow design can influence the performance of a DBD plasma reactor for dry reforming of methane.
Y. Uytdenhouwen, J. Hereijgers, T. Breugelmans, P. Cool and A. Bogaerts
Chem. Eng. J., 405, 126618 (2021)

600.

Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction.
L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts and J A. Martens
Angew. Chem. Int. Ed., 59, 23825 – 23829 (2020)

599.

Critical evaluation of the interaction of reactive oxygen and nitrogen species with blood to inform the clinical translation of nonthermal plasma therapy.
A. Lin, E. Biscop, C. Breen, S.J. Butler, E. Smits and A. Bogaerts
Ox. Med. Cell. Long., 2020, 9750206 (2020)

590.

Plasma-driven catalysis: green ammonia synthesis with intermittent electricity.
K.H.R. Rouwenhorst, Y. Engelmann, K. van ‘t Veer, R.S. Postma, A. Bogaerts and L. Lefferts
Green Chem., 22, 6258 (2020)

584.

Cold atmospheric plasma treatment for pancreatic cancer - The importance of pancreatic stellate cells.
R. Verloy, A. Privat-Maldonado, E. Smits and A. Bogaerts
Cancers, 12, 2782 (2020)

582.

Modeling plasmas in analytical chemistry - An example of cross-fertilization.
A. Bogaerts
Anal. Bioanal. Chem., 412, 6059-6083 (2020)(Invited feature article in the topical collection featuring “Female Role Models in Analytical Chemistry”)

581.

Plasma-based CO2 conversion: To quench or not to quench?
V. Vermeiren and A. Bogaerts
J. Phys. Chem. C, 124, 18401-18415 (2020)

580.

The 2020 plasma catalysis roadmap.
A. Bogaerts, X. Tu., J.C. Whitehead, G. Centi, L. Lefferts, O. Guaitella, F. Azzolina-Jury, H. Kim, A.B. Murphy, W.F. Schneider, T. Nozaki, J.C. Hicks, A. Rousseau, F. Thevenet, A. Khacef and M. Carreon
J. Phys. D: Appl. Phys., 53, 443001 (2020)

575.

Plasma-based N2 fixation into NOx: Insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron.
E. Vervloessem, M. Aghaei, F. Jardali, N. Hafezkhiabani and A. Bogaerts
ACS Sustainable Chem. Eng., 8, 9711-9720 (2020) and its supporting information

574.

Plasma technology for CO2 conversion: A personal perspective on prospects and gaps.
A. Bogaerts and G. Centi
Front. Energy Res., 8, 111 (2020)

572.

Predicted influence of plasma activation on nonoxidative coupling of methane on transition metal catalysts.
Y. Engelmann, P. Mehta, E.C. Neyts, W.F. Schneider and A. Bogaerts
ACS Sustainable Chem. Eng., 8, 6043−6054 (2020) and its supporting information

565.

Dual-vortex plasmatron: a novel plasma source for CO2 conversion.
G. Trenchev and A. Bogaerts
J. CO2 Utilization, 39, 101152 (2020)

561.

CO2 and CH4 conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2 and O2 affect the performance?
J. Slaets, M. Aghaei, S. Ceulemans, S. Van Alphen and A. Bogaerts
Green Chem., 22, 1366 (2020)

559.

Nitrogen fixation with water vapor by nonequilibrium plasma: Towards sustainable ammonia production.
Y. Gorbanev, E. Vervloessem, A. Nikiforov, A. Bogaerts
ACS Sustainable Chem. Eng., 8, 2996-3004 (2020)

555.

Power pulsing to maximize vibrational excitation efficiency in N2 microwave plasma: A combined experimental and computational study.
S. Van Alphen, V. Vermeiren, T. Butterworth, D. C. M. van den Bekerom, G. J. van Rooij, and A. Bogaerts
J. Phys. Chem. C, 124, 1765−1779 (2020)

554.

Ensemble-based molecular simulation of chemical reactions under vibrational nonequilibrium.
K.M. Bal,  A. Bogaerts & E.C. Neyts
J. Phys. Chem. Lett., 11, 401−406 (2020)

547.

Influence of cell type and culture medium on determining cancer selectivity of cold atmospheric plasma treatment.
E. Biscop, A. Lin, W. Van Boxem, J. Van Loenhout, J. De Backer, C. Deben, S. Dewilde, E. Smits and A. Bogaerts
Cancers, 11, 1287 (2019)

545.

Burning questions of plasma catalysis: Answers by modeling.
A. Bogaerts, Q. Zhang , Y. Zhang, K. Van Laer and W. Wang
Catal. Today, 337, 3-14 (2019)

543.

Improving the energy efficiency of CO2 conversion in nonequilibrium plasmas through pulsing.
V. Vermeiren and A. Bogaerts
J. Phys. Chem. C, 123, 17650−17665 (2019) and its supporting information

540.

Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy.
P. Shaw, N. Kumar, D. Hammerschmid, A. Privat-Maldonado, S. Dewilde and A. Bogaerts
Cancers, 11, 1109 (2019)

537.

Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study.
P. Heirman, W. Van Boxem and A. Bogaerts
Phys. Chem. Chem. Phys., 21, 12881 (2019)

534.

Suppressing the formation of NOx and N2O in CO2/N2 dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work.
R. Snoeckx, K. Van Wesenbeeck, S. Lenaerts and A. Bogaerts
Sustainable Energy Fuels, 3, 1388-1395 (2019)Selected for the cover of the journal

532.

Combining CO2 conversion and N2 fixation in a gliding arc plasmatron.
M. Ramakers, S. Heijkers, T. Tytgat, S. Lenaerts and A. Bogaerts
J. CO₂ Utilization, 33, 121-130 (2019) and its supporting information

530.

How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion.
Y. Uytdenhouwen, K.M. Bal, I. Michielsen, E.C. Neyts, V. Meynen, P. Cool and A. Bogaerts
Chem. Engng. J., 372, 1253–1264 (2019)

529.

Molecular evidence for feedstock-dependent nucleation mechanisms of CNTs.
U. Khalilov, C. Vets and E.C. Neyts
Nanoscale Horizons, 4, 674-682 (2019)

525.

Non-thermal plasma as a unique delivery system of short-Lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells.
A. Lin, Y. Gorbanev, J. De Backer, J. Van Loenhout, W. Van Boxem, F. Lemière, P. Cos, S. Dewilde, E. Smits and A. Bogaerts
Adv. Sci., 2019, 1802062 (2019)

519.

Atmospheric pressure glow discharge for CO2 conversion: Model-based exploration of the optimum reactor configuration.
G. Trenchev, A. Nikiforov, W. Wang, St. Kolev and A. Bogaerts
Chem. Engng. J., 362, 830-841 (2019)

516.

Modeling plasma-based CO2 and CH4 conversion in mixtuires with N2, O2 and H2O: The bigger plasma chemistry picture.
W. Wang, R. Snoecks, X. Zhang, M.S. Cha and A. Bogaerts
J. Phys. Chem. C, 122, 8704-8723 (2018) and its supporting information. (Invited feature article and selected for the cover of the journal).

515.

Plasma technology: An emerging technology for energy storage.
A. Bogaerts and E.C. Neyts
ACS Energy Lett., 3, 1013-1027 (2018)  (Invited feature article and selected to be featured in ACS Editors' Choice + Free Open Access)

514.

Streamer propagation in a packed bed plasma reactor for plasma catalysis applications.
W. Wang, H.-H. Kim, K. Van Laer and A. Bogaerts
Chem. Eng. J., 334, 2467-2479 (2018)

468.

Plasma technology - a novel solution for CO2 conversion?
R. Snoeckx and A. Bogaerts
Chem. Soc. Rev., 46, 5805-5863 (2017)(Paper featered on the back cover page of the journal)

467.

Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry.
E. Cleiren, S. Heijkers, M. Ramakers and A. Bogaerts
ChemSusChem, 10, 4025-4036 (2017) and its supporting information(Cover feature of the journal)

466.

Gliding arc plasmatron: provodong an alternative method for carbon dioxide conversion.
M. Ramakers, G. Trenchev, S. Heijkers, W. Wang and A. Bogaerts
ChemSusChem, 10, 2642-2652 (2017) and its supporting information.

465.

Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling.
W. Wang, B. Patil, S. Heijkers, V. Hessel and A. Bogaerts
ChemSusChem, 10, 2145-2157 (2017) and its supporting information. (Paper featered on the cover page of the journal, as "cover profile" and "very important paper" of ChemSusChem)

449.

Toward the understanding of selective Si nano-oxidation by atomic scale simulations.
U. Khalilov, A. Bogaerts and E.C. Neyts
Acc. Chem. Res., 50, 796-804 (2017)

432.

Molecular dynamics simulations for plasma-surface interactions.
E.C. Neyts and P. Brault
Plasma Process. Polymers, 14, 1600145 (2017)

429.

Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
M. Yusupov, J. Van der Paal, E.C. Neyts and A. Bogaerts
Biochim. Biophys. Acta, 1861, 839-847 (2017)

408.

CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity?
R. Snoeckx, S. Heijkers, K. Van Wesenbeeck, S. Lenaerts and A. Bogaerts
Energy Environm. Sci., 9, 999-1011 (2016) and its supplementary information.

401.

Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations.
K.M. Bal and E.C. Neyts
Chem. Sci., 7, 5280-5286 (2016)

400.

Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress.
J. Van der Paal, E.C. Neyts, C.C.W. Verlackt and A. Bogaerts
Chem. Sci., 7, 489-498 (2016)

386.

Can plasma be formed in catalyst pores?  A modeling investigation.
Y.-R. Zhang, K. Van Laer, E.C. Neyts and A. Bogaerts
Appl. Catal. B: Environm., 185, 56-67 (2016)