The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP

Maryam Aghaei, Helmut Lindner and Annemie Bogaerts

An inductively coupled plasma, connected to a sampling cone of a mass spectrometer, is computationally investigated. The effects of the sampler orifice diameter (ranging from 1 to 2 mm) and distance of the sampler cone from the load coil (ranging from 7 to 17 mm) are studied. An increase in sampler orifice diameter leads to a higher central plasma temperature at the place of the sampler, as well as more efficient gas transfer through the sampler, by reducing the interaction of the plasma gas with the sampling cone. However, the flow velocity at the sampler position is found to be independent of the sampler orifice diameter. Moreover, by changing the sampler orifice diameter, we can control whether only the central gas or also the auxiliary gas can exit through the sampler. Finally, with the increasing distance of the sampler from the load coil, the plasma temperature at the place of the sampler decreases slightly, which might also have consequences for the ion generation and transport through the sampling cone.

1 Introduction

The inductively coupled plasma (ICP) is the most popular ion source in analytical chemistry for elemental mass spectrometry (MS). The ions are sampled from the plasma by the insertion of a sampling cone into the plasma. As this (metal) sampling cone is relatively cool compared to the plasma temperature, it results in changes in the composition of the plasma gases that come in contact with the metal surface. Indeed, a boundary layer of cooler gases is formed along the surface of the metal. A detailed discussion about the boundary layer between the plasma stream and the sampler orifice, as well as sample introduction, ionization and ion extraction in ICP-MS was presented in 1981 by Houk et al.\(^1\) Later on, several studies were performed to investigate the influence of a MS sampler, both upstream and downstream from the interface cone.\(^2\)–\(^10\) In ref. 2–10, the upstream region, i.e., the plasma, was investigated, but no comparison was made with and without the sampling interface. Measurements in ref. 11–15 were focused on the region downstream from the interface, but did not give information on changes in the plasma itself. A detailed comparison of the plasma characteristics with and without the sampling interface was made experimentally by Houk and coworkers.\(^16\),\(^17\) Farnsworth and coworkers\(^18\) and Hieftje and coworkers.\(^19\)

Besides experimental studies, computational investigations also tried to provide a better insight into the ICP when it is coupled with a MS.\(^20\)–\(^23\) Douglas and French\(^20\) presented an approximate model of the ideal gas flow through the sampling cone which is the so-called hemispherical-sink model. Spencer et al.\(^21\),\(^22\) applied a Direct Simulation Monte Carlo (DSMC) algorithm to simulate the flow of neutral argon gas through the first vacuum stage of the ICP-MS. Their calculations yielded plasma velocity data in the region a few millimeters upstream from the sampler which were in reasonable agreement with those from experiments. However, the upstream density and plasma temperature gradients were not included and there was no plasma assumed in the model.\(^21\) Lindner and Bogaerts\(^23\) developed a model of an atmospheric pressure ICP which allows rather easy extension to a variable number of species and ionization degrees. In this model for the first time, the gas flow was traced from the injector inlets, and the plasma characteristics were calculated inside the entire ICP torch. An increase of the analytical performance of the ICP by helium addition to the injector gas was reported and a validation of the model by experiments is provided in ref. 24. Later on, a mass spectrometer interface was coupled to this model to investigate the effect of the presence of a sampler on the fundamental plasma characteristics in ICP-MS.\(^23\) In this paper, specifically the coil region of the plasma as well as the region very close to the sampler were studied. These regions are not very experimentally accessible, and thus, not many investigations on these regions are reported. It should be noted that Winge et al. performed a high speed photography study of ICP-MS and showed an off-axis droplet cloud being deflected as it passes into the sampling hole, which supports the pathline profiles we provided in ref. 25 comparing the ICP with and without the sampling cone.

In order to optimize the analytical performance of ICP-MS, a large number of investigations were performed to study the effect of ICP operating conditions on the plasma characteristics.\(^24\)–\(^34\)
However, only a few studies have focused on the effect of operating conditions on the upstream plasma.26–35 Effects of the rf power, nebulizer flow rate, sample composition and torch-shield configuration on the ion-transport efficiency through the ICP-MS interface have been studied by Macedone et al.26 Gamez et al. found that the perturbation in radial distribution of the electron density and the drop in plasma temperature due to the MS interface change with the applied rf power, central gas flow rate and sampling position.33,34

We recently investigated the effect of the operating conditions, i.e., central gas and auxiliary gas flow rates, the pressure downstream from the sampler and the forward power, on the upstream plasma characteristics of the ICP in contact with a MS interface.26 The calculation results were compared with measured data from ref. 26, 33 and 34. An optimum range of injector gas flow rates is dependent on the injector diameter as is indicated in ref. 24. For the used setup with an injector diameter of 1.5 mm, the optimum range of injector gas flow rates is from 1.0 up to 1.4 L min⁻¹, which guarantees the presence and also a proper length of the central channel in the torch. In ref. 34, Gamez et al. also demonstrated experimentally that the central channel becomes well-defined only at flow rates above 1.0 L min⁻¹, and in ref. 26 Macedone et al. reported the transport efficiency of the aerosol drops at flow rates above 1.4 L min⁻¹. Furthermore, our calculated data showed that the external power of up to 1250 W (for the specific geometry we used) is optimum and Farnsworth’s group also reported in ref. 26 that only a power rise of up to 1300 W causes a better transport efficiency while for power values above 1300 W, the transport efficiency decreases, which was in agreement with our computational results. Moreover, it showed that for any specific purpose, it is possible to control whether only the central gas flow passes through the sampler orifice or it is accompanied by the auxiliary gas flow.26

Besides the optimization of operating parameters, the effect of geometrical parameters has also been of considerable interest. In 1983 Gray and Date37 reported that larger sampler orifice diameters than those for boundary layer sampling (i.e., 50–80 μm diameter range) were needed for sampling the bulk plasma (at least 0.2 mm diameter). However, with these larger orifice diameters another problem arose, i.e., a secondary discharge between the plasma and the sampling cone developed, as had also been already explained by Houk et al. in ref. 1. The formation of this discharge is also discussed in ref. 17 and 38. Lichte et al.,39 however, reported that due to deposition of material, the sampling orifice becomes smaller and the metal-to-metal oxide ion ratios change. Crain et al.40 reported that matrix effects are affected by the ratio of sampler and skimmer orifice diameters. Vaughan and Horlick41 also varied the sampler and skimmer orifice diameters, and indicated that the sampler orifice diameter has a major impact on the signal characteristics. Indeed, for oxide forming elements, the MO⁻/M⁺ signal ratio appeared to be highly dependent on the orifice diameter. This was also reported by Longerich et al.42 In addition, variation in the sampling orifice diameter changes the shape of the signal versus the nebulizer flow rate.43,44 Furthermore, Vaughan and Horlick also indicated that the sampling orifice is the primary location for oxide formation in ICP-MS. However, the range of sampler orifice diameters used in their study was from 0.51 to 0.94 mm, which is smaller than the range used in more recent designs (i.e. larger than 1 mm). They also investigated the effect of the skimmer orifice diameter on the analyte signals and reported that this effect is not as dramatic as the effect of the sampler orifice diameter. In the range of small orifices i.e. below 1 mm and using LAM-ICP-MS, Günter et al. also reported that by decreasing the sampler cone orifice size (0.7 to 0.5 mm), many background intensities can be reduced by up to two orders of magnitude, while maintaining comparable sensitivity.45 Finally, Taylor and Farnsworth recently investigated the effect of skimmer cone design (for five commercially available skimmer designs) on the shock formation and ion transmission efficiency at the vacuum interface of an ICP-MS.44 They reported that the strongest shock was recorded for a skimmer with a cylindrical throat, and the weakest shock was produced by a skimmer with the largest diameter and a conical throat. The transmission efficiency increased with the increasing skimmer orifice diameter.

These observations all suggest that the use of interfaces with different orifice sizes can cause a change in the plasma characteristics. In addition to the effect of sampler and skimmer orifice diameters, the place of the sampler itself was also investigated experimentally. Gamez et al. studied the effect of sampling position on the plasma characteristics of an ICP46 and reported that as the MS interface is brought closer to the ICP load coil, the upstream plasma temperature dropped. Finally, Macedone et al. also showed that the barium ion number density in the plasma upstream from the sampler drops as the sampling position is reduced.35

In the present paper, we investigate the effect of the sampler distance and sampler orifice diameter on the upstream plasma characteristics of the ICP by means of computer simulations to obtain a deeper insight into the effect of these geometrical parameters. Different sampler distances from the load coil and different sampler orifice diameters are considered in the model. Note that another geometrical parameter, i.e., the injector inlet diameter, has already been investigated in ref. 24, so it is kept constant here. The plasma temperature, gas density, electron density and velocity profiles and the path lines of the gas flow inside the coil region as well as in the region close to the MS interface are studied. The calculation results will be compared with measured data from ref. 33 and 34.

2 Description of the model

A commercial computational fluid dynamics (CFD) program, called Fluent v13.0.0 (ANSYS), was used for the calculations.45 The solver algorithm of the simulation is the so-called coupled algorithm.46 For defining the heat capacity and thermal conductivity, a number of self-written modules were added as user-defined functions (UDFs), as described in ref. 23. The electric fields were solved as user defined scalars (UDSs) in Fluent. The 2D axisymmetric geometry of the setup is displayed in Fig. 1. The figure of the torch is in scale; however, the whole calculation region is not shown. Indeed, the calculation region

This journal is © The Royal Society of Chemistry 2013
has an axial length of 15 cm and a radius of 10 cm. The electric field was assumed to be zero at the border of the calculation region. This can be regarded as the equivalent of the metal shielding box around the ICP, which prevents the rf radiation from entering the laboratory. In our former studies,25,26 a MS interface (sampler cone) was placed at a distance of 41.5 mm from the gas inlets (10 mm distance from the load coil), on the central axis, and it had a central orifice of 1 mm diameter. In the present work, we performed calculations for different sampler distances from the load coil, ranging from 7 mm to 17 mm. For each sampler distance, we considered three different orifice diameters, i.e., 1 mm, 1.5 mm and 2 mm. In Fig. 1, only the sampler distance of 10 mm with 1 mm orifice diameter is shown.

The gas coming from the three concentric tubes of the ICP torch flows into the sampler cone and towards the open sides of the torch, which are filled with ambient gas, taken to be argon for simplicity. The downstream pressure of the sampler is shown. For simplicity, the downstream pressure of the sampler is 1 torr (1.32 \times 10^{-3} \text{ atm}) similarly to the experimental setup in ref. 18 and 26. The ambient gas pressure and exhaust pressure are set to 1 atm and 0.99 atm, respectively. The ICP gas stream is assumed to be argon. The plasma species considered in the model are Ar atoms, singly charged and doubly charged Ar ions, and electrons. Their transport properties are calculated by kinetic theory, as is fully described in ref. 23. As discussed in ref. 23 and verified by comparing the calculation results with those from experiments in ref. 24, applying the local thermodynamic equilibrium (LTE) condition to the plasma is a reasonable approximation.

The gas flow inside the torch is calculated by solving the Navier–Stokes equations. Since the Reynolds number of the flow, even that of the sampler (= 120), is far from the turbulence regime, the laminar flow assumption can be utilized.46 The model was validated according to the experimental work in ref. 24, 25 and 36. The total power coupled to the plasma is set to 1000 W and the frequency of the harmonic external electric current density is 27 MHz. The plasma, auxiliary and injector gas flow rates are kept fixed at 12, 0.4 and 1.0 L min\(^{-1}\), respectively. The boundary conditions as well as the operating parameters are also displayed in Table 1.

Table 1 Operating and boundary conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>27 MHz</td>
</tr>
<tr>
<td>Input power</td>
<td>1000 W</td>
</tr>
<tr>
<td>Central gas flow rate</td>
<td>Ar; 1.0 L min(^{-1})</td>
</tr>
<tr>
<td>Intermediate gas flow rate</td>
<td>Ar; 0.4 L min(^{-1})</td>
</tr>
<tr>
<td>Outer gas flow rate</td>
<td>Ar; 12 L min(^{-1})</td>
</tr>
<tr>
<td>Ambient pressure</td>
<td>101.325 Pa</td>
</tr>
<tr>
<td>Exhaust pressure</td>
<td>101.225 Pa</td>
</tr>
<tr>
<td>Pressure downstream from the sampler cone</td>
<td>1.32 \times 10^{-3} \text{ atm (1 torr)}</td>
</tr>
<tr>
<td>Injector diameter</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Inlet gas temperature</td>
<td>297 K</td>
</tr>
<tr>
<td>Sampler cone temperature</td>
<td>500 K</td>
</tr>
<tr>
<td>Sampler orifice diameter</td>
<td>1–2 mm</td>
</tr>
<tr>
<td>Sampler distance from the load coil</td>
<td>7–17 mm</td>
</tr>
</tbody>
</table>

3 Results and discussion

(a) Plasma temperature and gas flow path lines

The temperature and velocity are a result of solving coupled differential equations such as the Navier–Stokes equations and the energy equation, where certain terms are added, e.g. power coupling as a source term and the emitted radiation as an energy loss term. The values are calculated by a finite-volume method taking into account the whole calculation region and its boundary conditions. The values are iteratively calculated until a stable solution is found. Fig. 2 shows the 2D plasma temperature distribution (upper frames) and velocity path lines (lower frames) for two different sampler orifice diameters, i.e., 1 mm (left column) and 2 mm (right column), at different sampler positions, i.e., 7 mm (first row), 10 mm (second row) and 13 mm (third row) from the load coil. We performed calculations for a sampling position of up to 17 mm distance from the load coil, but as the pattern is the same in all cases, only the data for a sampling position of 7 mm, 10 mm and 13 mm are shown here for clarity. When comparing the two columns in Fig. 2, it is clear that the outgoing pattern of the auxiliary gas (see black path lines) is quite different when the sampler orifice diameter is changed. At 1 mm diameter, all the auxiliary gas exits through the open sides of the torch, while at 2 mm diameter, the auxiliary gas exits through the sampler orifice and goes to the MS, together with the injector gas.

As demonstrated in ref. 36, the flow pattern of the auxiliary gas can also be controlled by varying the ratio of auxiliary and injector gas flow rates. The results presented in ref. 36 were obtained for an injector diameter of 1.5 mm and a sampler orifice diameter of 1 mm, like in the left column of Fig. 2, but it is clear that changes in the geometrical parameters affect this behavior. Indeed, in the present paper, the injector gas flow rate is higher than the auxiliary gas flow rate (i.e., 1.0 vs. 0.4 L min\(^{-1}\); cf. above), so according to ref. 36 we would expect to have only the injector gas flowing through the sampler orifice and the auxiliary gas exiting through the open sides of the torch. However, this appears not to be the case for the orifice diameter of 2 mm (see Fig. 2, right column). Indeed, also the ratio between the injector inlet and the sampler orifice diameters plays a role. In the left column, the injector inlet diameter (kept...
The red contours demonstrate the area of external power coupling. The injector gas can be controlled by a combination of the auxiliary gas can pass through the sampler ori
cles also affect the plasma temperature profiles close to the sampler (see upper frames). Indeed, the auxiliary gas passes through the region of highest power coupling in the plasma (see red contours in the lower frames), and will therefore be at higher plasma temperature than the injector gas. For an orifice diameter of 2 mm (right column), the auxiliary gas passes through the sampler orifice, and therefore the plasma temperature will be higher near the sampler orifice than in the case of 1 mm orifice diameter (left column), as is clear from Fig. 2. Hence, the gas will pass through the sampler orifice with a higher plasma temperature, which helps to sustain the ions on their way to the detectors. Moreover, with a larger orifice, the cooling effect of the sampler is somewhat lower at the central axis (see also below). This might also have important consequences for the ICP sampling performance, because the gas flow which contains most of the sample ions is less affected by the interface cone.

Fig. 3 shows the plasma temperature as a function of radial position for sample orifice diameters of 1 mm (black lines) and 2 mm (red lines), at a sampler position of 7 mm (solid lines) and 17 mm (dotted-dashed lines) from the load coil.
lines), 10 mm (dashed lines), 13 mm (dotted lines) and 17 mm (dotted-dashed lines) from the load coil. It is clear that an increase in orifice diameter causes a slightly higher plasma temperature at the center and a clearly lower plasma temperature at the sides, which is explained by the change in the auxiliary gas pathlines, illustrated in Fig. 2 above. Indeed, the hotter auxiliary gas will exit through the sampler cone at 2 mm sampler orifice diameter, yielding a higher plasma temperature at the center, whereas at 1 mm sampler orifice diameter, it will flow out through the sides, resulting in a higher plasma temperature at the sides. Furthermore, an increase in sampler distance from the load coil leads to a lower plasma temperature at the sampler position, because the gas has more time to cool down by emitting radiation after leaving the torch. This drop in the plasma temperature with increasing distance from the load coil was also reported by Hieflje and coworkers.34

Fig. 4 illustrates in detail the flow velocity path lines close to the sampler, with an orifice diameter of 1 mm (a) and 1.5 mm (b). Note that the injector gas flow rate is not the same in both figures, i.e., it is equal to 1 L min\(^{-1}\) for the 1 mm orifice diameter, and 2.25 L min\(^{-1}\) for the 1.5 mm orifice diameter, so that the ratio of the injector gas flow rate to the surface area of the sampler orifice is constant in both cases. It is obvious from Fig. 4 that in both cases the injector gas (colored) can exit through the orifice, as desired, but the interaction between the flow and the metal sampling cone is much more prominent in the case of the smaller orifice diameter (see Fig. 4a), leading to a somewhat lower flow velocity as well as more pronounced cooling of the gas. The latter will result in changes in the composition of the plasma gases that come in contact with the metal surface, i.e., a boundary layer of cooler gases will be formed along the surface of the metal. This effect was also described in the literature. Indeed, Hayhurst et al.48 stated that a larger orifice diameter results in a larger total flow rate into the sampler, which causes a reduction in the boundary layer thickness. This would result in lower oxide levels for larger sampler orifice diameters, which was indeed observed.41 Moreover, a large sampling orifice was not so easily clogged by concentrated solutions, and because the sampling orifice diameter was significantly larger than the thickness of the boundary layer formed on its edges, the bulk of the plasma flowing into the first vacuum stage had essentially the same composition as the upstream plasma.44

Finally, similar to Fig. 2, we can again conclude from Fig. 4b that also in this case, i.e., the diameter of the injector gas inlet equal to the sampler orifice diameter, the auxiliary gas can exit through the sampler, even when the injector gas flow rate is higher than the auxiliary gas flow rate.

(b) Electron number density and gas density
The electron density was calculated by solving the Saha–Eggert equation. Fig. 5 presents the radial electron number density profile at 8 mm from the load coil, for different positions of the sampler, i.e. 10 mm (solid line), 13 mm (dashed line) and 17 mm (dotted line) distance from the load coil. The electron density in the central region drops slightly when the sampling position is reduced. Experimentally, Gamez et al.34 and Macedone et al.35 reported the same behavior for the electron temperature and ion density, respectively. The explanation is of course logical, because in the case of the shorter sampling position (10 mm distance from the load coil) the distance between the sampler and the “measurement position” of the electron density, i.e., 8 mm, is only 2 mm, and the cooling of the plasma by the metal sampling cone will be more pronounced, resulting in a lower plasma temperature and hence lower electron density, while in the case of the larger sampling position, the distance between the sampling cone and the “measurement position” is 9 mm, and hence the (cooling) effect of the sampling cone is less pronounced. In Fig. 6 the radial gas density profile is plotted at the position of the sampler, for the case of 10 mm distance from the load coil, with orifice diameters of 1 mm (black line) and 2 mm (red line). \(R = 0\) shows the center of the sampler orifice, or the central axis of the torch. In both cases, two maxima are observed close to the center, which indicate the edges of the sampler orifice, i.e. at \(R = 0.5\) mm and \(R = 1\) mm from the center in the black and red plots, respectively. To explain these density profiles, we refer to the plasma temperature profiles presented

![Fig. 4 2D gas flow velocity path lines originating from the injector gas and outer gas inlets, colored by velocity in m s\(^{-1}\), and from the auxiliary gas inlet, colored in black, close to the sampler, which is placed at 10 mm distance from the load coil with an orifice diameter of 1 mm (a) and 1.5 mm (b). The injector gas flow rate is taken as 1 (a) and 2.25 (b) L min\(^{-1}\), to maintain the same ratio of the injector gas flow rate to the surface area of the sampler orifice.](image1)

![Fig. 5 Radial distributions of the electron number density (m\(^{-3}\)) at 8 mm distance from the load coil, for different positions of the sampler, i.e. 10 mm (solid line), 13 mm (dashed line) and 17 mm (dotted line) distance from the load coil and a sampler orifice diameter of 1 mm.](image2)
in Fig. 3. At the center of the orifice, the plasma temperature has its maximum value and two pronounced drops are seen at both sides of it, indicating the edges of the sampler orifice. Indeed, the sampling cone temperature close to the orifice is around 550 K, so it cools down the gas (Fig. 3), and following the ideal gas law, the density rises (Fig. 6). The inverse relationship between plasma temperature and gas density profiles is indeed clear from Fig. 3 and 6. At larger sampler orifice diameter, the cooling effect of the sampling cone at the center will be more moderate, resulting in a somewhat higher plasma temperature and somewhat lower gas density. Hence, the gas will pass through the orifice with a somewhat higher plasma temperature and lower density.

(c) Gas velocity

Fig. 7 presents the 2D gas velocity distributions when the sampler cone is placed at 10 mm from the load coil and the orifice diameter is 1 mm (a) and 2 mm (b). A larger sampler orifice results in a larger gas flow velocity in the region close to the sampler. The acceleration of the gas is very prominent in the region close to the sampler and the gas velocity changes strongly with the position in this region. According to our calculation, at the place of the sampler, the plasma ions enter the MS with almost the same velocity in both cases. It means that the maximum value of the gas velocity exiting from the sampler is independent of the sampler orifice size. The value of the Mach number at the center of the orifice, where the flow has its maximum velocity, is around 0.6, and is found to be the same for both orifice sizes. It is mentioned also in ref. 49 that the Mach number and velocity are independent of the size of the orifice. The position of the sampler, also, does not exhibit any considerable effect on the gas velocity.

4 Conclusion

We have computationally investigated the effect of the distance of the sampler cone from the load coil and its orifice diameter on the plasma characteristics in the ICP connected to a MS, in order to obtain a better insight into the effect of these geometrical parameters on the analytical performance of ICP-MS. The fundamental plasma characteristics of the ICP upstream from the sampler, calculated in this work, include the plasma temperature, electron number density, gas density and gas flow velocity.

Our calculations show that by increasing the sampler orifice diameter, the central plasma temperature at the place of the sampler rises slightly and consequently, the gas density reduces a bit, while the gas density is maximum at the edges of the sampler. Furthermore, the gas passes through the sampler orifice with a velocity which is independent of the sampler orifice diameter.

From a zoomed picture of the velocity path lines close to the sampler, it is clear that the interaction of gas with the interface cone reduces by increasing the sampler orifice diameter, which causes a lower plasma temperature reduction at the place of the sampler cone and leads to more efficient gas transfer to the mass spectrometer.

Furthermore, our calculation results have demonstrated that the sampler orifice diameter should be equal to or larger than the injector inlet diameter to make sure that the auxiliary gas
can also pass through the sampler orifice, which is desired when the ion cloud is large at the place of the sampler. On the other hand, to ensure that only the injector gas can enter the mass spectrometer, which is necessary to optimize the detection efficiency of the sample in the case when the ion cloud diameter is small, i.e., when the analyte ions are transported only by the injector gas, the sampler orifice diameter should be smaller than the injector inlet diameter.

Finally, the plasma temperature at the place of the sampler decreases slightly with the increasing distance of the sampler from the load coil, and at a fixed measurement position upstream from the sampler, the electron density drops when the sampling position is reduced.

Acknowledgements
The authors gratefully acknowledge financial support from the University of Antwerp through the Methusalem Financing. This work was carried out using the Turing HPC infrastructure at the CalCUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen.

References
45 ANSYS FLUENT 12.0/12.1 Documentation, 2009.