CO₂ Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed

Christophe De Bie, ‡ Jan van Dijk, † and Annemie Bogaerts* †

†Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerpen, Belgium
‡Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, Postbus 513, 5600 MB Eindhoven, The Netherlands

ABSTRACT: The hydrogenation of carbon dioxide in a dielectric barrier discharge plasma is studied with a one-dimensional fluid model. The spatially averaged densities of the most important end products formed in the CO₂/H₂ mixture are determined as a function of the initial gas mixing ratio. CO and H₂O are found to be present at the highest densities and to a lower content also CH₄, C₂H₆, CH₂O, CH₃OH, O₂, and some other higher hydrocarbons and oxygenates. The main underlying reaction pathways for the conversion of the inlet gases and the formation of CO, CH₄, CH₂O, and CH₃OH are pointed out for various gas mixing ratios. The CO₂ conversion and the production of value added products is found to be quite low, also in comparison to a CO₂/CH₄ mixture, and this can be explained by the model.

1. INTRODUCTION

Global warming, due to CO₂ emissions, is one of the major problems of the 21st century. CO₂ is a very stable molecule that requires a lot of energy to be activated for the majority of synthetic routes to produce chemicals. Therefore, a first objective in the mitigation of CO₂ emissions is the process of carbon dioxide capture and storage (CCS), as pointed out in a special report published in 2005 by the Intergovernmental Panel on Climate Change. Nowadays, it is clear that aside from the reduction of CO₂ emissions to the atmosphere and the use of CCS for this purpose, also the energy efficient utilization of (captured) CO₂, as an important carbon resource to create products, will be a crucial step in order to achieve an economically viable low-carbon economy.

Today, CO₂ utilization is mainly limited to the direct use, i.e., without a conversion step, as an inert agent for food packaging, in carbonated drinks, in refrigeration systems, in fire extinguishers, as a solvent, and for enhanced oil recovery (particularly in the United States), as well as the indirect use for the chemical production of mainly urea, a lower content of methanol and an even smaller amount of a wide variety of other products.¹⁻³ Ongoing research on the conversion of CO₂ in value added chemicals is primarily focusing on the formation of carbon monoxide (CO), methanol, polymers, urea, carboxylates, carbonates, olefins, etc. In order to convert CO₂ into products, an energy source, such as heat or electricity, or material inputs, such as fly ash, hydrogen, or epoxides, is required.² To become of added value, it is crucial that new CO₂ utilization processes have a lower carbon footprint than their equivalent classical processes using fossil fuel routes for the production of the same product.

In the last decades, there is an increasing interest in using plasma technology for the conversion of gases such as CO₂. Several types of plasma reactors are being investigated for this purpose.²⁻⁵ One example of such a plasma is the dielectric barrier discharge (DBD) which can be operated at atmospheric pressure and room temperature, and thus, it enables gas phase reactions at ambient conditions. A DBD is generated between two electrodes of which at least one is covered with a dielectric material. The gap between both electrodes is typically a few millimeters. An ac voltage with an amplitude of 1⁻100 kV and a frequency ranging from a few Hz to MHz is usually applied to this kind of discharges.

Current research on the use of plasma for CO₂ conversion includes the splitting of pure CO₂ into CO and O₂,¹¹⁻⁻³⁵ and the direct synthesis of higher hydrocarbons, syngas, and oxygenates through the reforming of CH₄ by CO₂ or the hydrogenation of CO₂.³⁶⁻⁹⁵ However, application of the latter is up to now limited because of the high cost of hydrogen.³⁹ The sustainable and economically viable production and use of H₂ will be of major importance to develop a competitive process for the hydrogenation of CO₂. Even more, an environmentally beneficial conversion process can only be realized if this process converts more CO₂ than the amount of CO₂ produced in the whole process including the H₂ manufacturing. Nowadays, H₂ is produced by steam reforming of CH₄, coal gasification, and partial oxidation of light oil residues. As a result, fossil fuels are depleted and the net atmospheric CO₂ emissions are increased.⁹⁹ Therefore, a lot of research is carried out concerning new H₂ production methods based on the use of renewable energy sources. Besides, also technologies for the production of H₂ from H₂O such as electrolysis, thermolysis,
thermochemical splitting, photoelectrolysis, and photobiological cleavage are of interest.100 Recently, the interest in the development of new sustainable industrial processes for the direct hydrogenation of CO\textsubscript{2} into CH\textsubscript{3}OH is increasing because of the potential of CH\textsubscript{3}OH in a growing hydrogen economy. Methanol is a primary liquid petrochemical which is of great importance in the chemical and energy industries, because it can be easily stored and transported.99 A direct route to produce methanol would be more efficient and environmentally sustainable as it becomes more and more possible to make hydrogen gas in an economically efficient manner using renewable energy. Moreover, this hydrogenation process is a well-known reaction in catalysis research. Olah et al.100 discussed the present understanding of the mechanism of the catalytic methanol synthesis from syngas. They concluded that CH\textsubscript{3}OH is probably almost exclusively formed by hydrogenation of CO\textsubscript{2} contained in syngas on the catalytic surface. The CO in the syngas first undergoes a water–gas shift reaction to form CO\textsubscript{2} and H\textsubscript{2}. The formed CO\textsubscript{2} then reacts with H\textsubscript{2} to yield CH\textsubscript{3}OH. Furthermore, in view of the goal to reduce the atmospheric concentration of CO\textsubscript{2} and therefore decreasing our dependence on fossil fuels, the use of natural gas and its principal component CH\textsubscript{4} as a reactant is of less interest. Therefore, if H\textsubscript{2} can be produced from H\textsubscript{2}O by renewable energy sources, it is more interesting as H-source for CO\textsubscript{2} conversion than CH\textsubscript{4}.

In order to develop an economically viable industrial process for the hydrogenation of CO\textsubscript{2} by means of a dielectric barrier discharge, it is crucial to first obtain a better insight into the complicated underlying plasma chemistry acting in the conversion process. Besides experimental work, computer modeling can offer here the necessary information.

Experimental and modeling investigations on the plasma chemistry in CO\textsubscript{2}/H\textsubscript{2} mixtures reported in literature are, however, very rare. Eliasson et al.95 investigated the hydrogenation of CO\textsubscript{2} to CH\textsubscript{3}OH in a DBD with and without the presence of a catalyst. Experimentally the effects of combining a catalyst with a discharge on the yield of CH\textsubscript{3}OH were analyzed for different reaction parameters, such as the gas temperature, the pressure, the inlet gas mixing ratio, the electric power, and the flow rate of the feed gas. Furthermore, a simplified semiempirical kinetic model was used to simulate the accumulated chemical action of many microdischarges, in order to calculate the CH\textsubscript{3}OH yield in the CO\textsubscript{2}/H\textsubscript{2} discharge. A radical reaction mechanism was proposed for the formation of CH\textsubscript{3}OH. Liu et al.101 discussed in a review paper the use of nonthermal plasma for CO\textsubscript{2} utilization, including the hydrogenation of CO\textsubscript{2} to form CH\textsubscript{3}OH in a DBD, referring thereby to the work of Eliasson et al.95 Hayashi et al.96 discussed the decomposition of CO\textsubscript{2} in the presence of H\textsubscript{2} or water vapor by a nonthermal plasma, produced by a surface discharge at atmospheric pressure. CO, CH\textsubscript{4}, dimethyl ether (C\textsubscript{2}H\textsubscript{6}O), formic acid (HCOOH), and water vapor were detected as end products of a gas mixture of 50% CO\textsubscript{2} and 50% H\textsubscript{2}. Kano et al.97 studied the reforming of CO\textsubscript{2} by H\textsubscript{2} to CH\textsubscript{4} and CH\textsubscript{3}OH by using a radio frequency impulse low-pressure discharge under different discharge parameters. CH\textsubscript{4}, CO, CH\textsubscript{3}OH, and water vapor were found as end products. Recently Zeng et al.98 investigated the plasma-catalytic CO\textsubscript{2} hydrogenation in a coaxial packed-bed DBD at low temperatures and atmospheric pressure. The performance of different γ-Al\textsubscript{2}O\textsubscript{3} supported metal catalysts on the conversion of CO\textsubscript{2} was studied. The reverse water–gas shift reaction, i.e., the formation of CO and H\textsubscript{2}O, as well as carbon dioxide methanation, i.e., the formation of CH\textsubscript{4} and H\textsubscript{2}O, have been reported as the dominant reaction processes. The results also show that the H\textsubscript{2}/CO\textsubscript{2} molar ratio significantly affects the conversion of CO\textsubscript{2} and the yields of CO and CH\textsubscript{4}. Furthermore, some recent theoretical studies on the hydrogenation of CO\textsubscript{2} are worth mentioning, although they are not directly related to plasma chemistry. Chivassa et al.102 modeled the synthesis of CH\textsubscript{3}OH from CO\textsubscript{2}/H\textsubscript{2} on a Ga\textsubscript{2}O\textsubscript{3}−Pd/silica catalyst and Tao et al.103 performed a density functional theory (DFT) study to investigate the reaction mechanisms for the synthesis of CH\textsubscript{3}OH from CO\textsubscript{2} and H\textsubscript{2}.

In the present paper, we present a 1D fluid modeling study for the conversion of CO\textsubscript{2} in the presence of H\textsubscript{2} into CO\textsubscript{2} higher hydrocarbons and higher oxygenates. The extensive chemistry set used in this model was earlier developed and previously used to describe the plasma chemistry in an atmospheric pressure DBD in CH\textsubscript{4}/O\textsubscript{2} and CH\textsubscript{4}/CO\textsubscript{2} gas mixtures.87 The formation of a variety of higher hydrocarbons and higher oxygenates in CO\textsubscript{2}/H\textsubscript{2} for different gas mixing ratios is calculated, as well as the conversion of the inlet gases. These results will be compared with the experimental observations from the papers mentioned above on CO\textsubscript{2}/H\textsubscript{2} gas discharges, as well as with earlier calculated results with the same model for a CH\textsubscript{4}/CO\textsubscript{2} gas mixture. This will allow us to determine the best gas mixture, in terms of conversion and production of the various value-added end products considered in the model. Furthermore, the focus of the present paper is on the main underlying pathways governing the conversion of CO\textsubscript{2} with H\textsubscript{2}, into the main reaction products, i.e., CO, CH\textsubscript{4}, CH\textsubscript{3}OH, and CH\textsubscript{3}OH\textsubscript{2}, in order to explain the product formation in the different gas mixing ratios and to reveal why some oxygenates are formed while others seem not to be formed.

\section{2. \textbf{DESCRIPTION OF THE MODEL}}

A one-dimensional fluid model, called Plasma’s MD2D104,105 is applied. This fluid model consists of a set of coupled partial differential equations which are derived from the Boltzmann equation. More specifically, particle continuity equations and drift-diffusion equations for the various species, as well as an electron energy balance equation, are solved. These equations are coupled to the Poisson equation for a self-consistent calculation of the electric field. This set of coupled equations is solved in time and in space until periodic steady state is reached. A more detailed description of the physics used in the model and of the numerical methods that are applied, is reported by Hagelaar106 and by Brok et al.107 Detailed information about the specific use of the model for describing a detailed plasma chemistry in a DBD and the applied boundary conditions can be found in De Bie et al.108

The chemistry set developed for the CO\textsubscript{2}/H\textsubscript{2} gas mixture is almost identical to the one constructed for a CH\textsubscript{4}/O\textsubscript{2} and CH\textsubscript{4}/CO\textsubscript{2} gas mixture, except for some adaptations of the third body species in the neutral–neutral three-body collision reactions, where CO\textsubscript{2} and H\textsubscript{2} are now included as third body instead of CH\textsubscript{4}, O\textsubscript{2}, CO\textsubscript{2}, and H\textsubscript{2}O, with the same rate coefficients. In total, 75 species (electrons, molecules, ions, and radicals) are included in the model, as presented in Table 1. Note that dimethyl ether (CH\textsubscript{3}OCH\textsubscript{3}) and formic acid (HCOOH), which were experimentally found by Hayashi et al.,96 as mentioned above, are not included in the model as the rate constants for the formation and loss processes for these molecules are unknown. As a consequence, our model will not be able to make predictions on the formation of these products.
We assume that the gas temperature is 300 K, constant in time and in space. This is justified, because in a DBD there is only local heating due to the discharge filaments. However, the latter only take a very small fraction of the reactor volume for several nanoseconds, with a repetition in the microseconds scale, yielding a so-called volume-corrected filament frequency of about 0.02% per half discharge period.109 This volume-corrected filament frequency was estimated in Bogaerts et al.109 from experimental data of Ozkan et al.33 on the filament lifetime and the number of filaments per half discharge cycle. More specifically, in these experiments, an average filament lifetime of 15.6 ns was measured, and about 200 filaments per half cycle were counted. Assuming a typical filament diameter of 0.1 mm in a gap size of 2 mm corresponds to a filament volume of 0.016 mm3.109 The plasma reactor volume of Ozkan et al.33 was 15.08 cm3; hence, this yields a filament volume fraction of 1.04 \times 10^{-6}. When we combine this with the measured number of filaments per half cycle (i.e., 200), this gives a so-called “volume-corrected filament frequency” of 2.08 \times 10^{-4} (or 0.02%) per half cycle. Thus, as the filaments occupy only a small fraction of the discharge, both in space and in time, overall, the gas heating is very limited. Furthermore, often a water jacket is used in experiments to cool the reactor and keep the reactor temperature constant.18,36,110−113 More information about the reactor setup can be found in our previous papers.

The calculations are carried out as a function of time, up to 20s. This time corresponds to the gas residence time in the reactor. Thus, the gas conversion and product yields for shorter residence times (corresponding to higher gas flow rates) will also follow automatically from these model calculations. Furthermore, a sinusoidal voltage with amplitude of 5 kV and frequency of 10 kHz is applied. The CO\textsubscript{2} fraction in the CO\textsubscript{2}/H\textsubscript{2} mixture is varied from 10 to 90%.

3. RESULTS AND DISCUSSION

First, the spatially averaged electron density and temperature, and radical densities as a function of time and initial gas mixing ratio will be illustrated. Subsequently, the densities of the formed end products, as well as their yields and selectivities and the conversion of the inlet gases as a function of the initial gas mixing ratio will be presented. Finally, the dominant reaction pathways for the conversion of the inlet gases and the formation of CO, CH\textsubscript{4}, CH\textsubscript{2}O, and CH\textsubscript{3}OH will be pointed out for the various gas mixing ratios. A comparison will be made with our previous work on the conversion in a CO\textsubscript{2}/CH\textsubscript{4}

![Figure 1](image-url)
Figure 1. Spatially averaged electron density (a) and energy (b) as a function of time for a 50/50 CO\textsubscript{2}/H\textsubscript{2} gas mixture, on a linear scale, as well as the applied sinusoidal voltage (gray, right axis) for four periods of the applied voltage (i.e., between 0.0016 and 0.002 s).
gas mixture, to determine which gas mixture would be more suitable for producing specific value added products.

3.1. Densities of the Plasma Species. The plasma chemistry in a DBD is initiated by the electrons, which are heated by the electric field and give rise to electron impact excitation, ionization, and dissociation collisions. The excited species, ions and radicals created in this way, will then further react into the formation of new molecules. The spatially averaged electron density and temperature, as well as the densities of the radicals and ions produced in the plasma, exhibit periodic behavior as a function of time, following the period of the applied sinusoidal voltage. Periodic steady state is reached after 0.001 s. Figure 1 shows the spatially averaged electron density and temperature as a function of time, for four periods of the applied voltage, for a 50/50 CO2/H2 gas mixture. It is clear that the electron density varies from peak values of \(10^{18} \text{ m}^{-3}\) in the beginning of each period to virtually zero in the rest of the period, while the spatially averaged mean electron energy varies between 0.7 and 3.8 eV. The overall spatially and time averaged electron density for all CO2/H2 gas mixtures under study amounts to ca. \(10^{15} \text{ m}^{-3}\), while the overall spatially and time averaged mean electron energy varies between 1.9 and 2.7 eV. These results are similar to the values calculated in pure CH4 and in the CH4/O2 and CH4/CO2 gas mixtures.87 Also the ion densities show a similar periodic behavior, as was illustrated in our earlier work.87,108

Note that an electron density of ca. \(10^{15} \text{ m}^{-3}\) is a typical value for the filaments in a DBD,4,114 where the electron impact collisions are initiated, while a mean electron energy between 1.9 and 2.7 eV also is typical inside the filaments.4,114 This indicates that our model, neglecting the filaments, will still give a realistic estimate of the plasma chemistry.

Figure 2 illustrates the periodic behavior of the most important radical densities for a 50/50 CO2/H2 gas mixture, for four periods of the applied voltage. Only the CH3 and CH2 radicals vary over a wide range as a function of time within one period of the applied voltage, while the other radicals show only a minor (\(~10\%) periodic variation (H, O, OH), or almost no periodic variation at all (HO2, CHO). The periodic trend is here superimposed on a rising trend, acting over a longer time scale until periodic steady state is reached. The H atoms are the most abundant radicals, with an overall spatially and time averaged density of about \(10^{20} \text{ m}^{-3}\), followed by the O atoms, OH, HO2, and CHO radicals, which have densities in the order of \(10^{19}, 10^{17}, 10^{15}\), and \(10^{15} \text{ m}^{-3}\), respectively. The CH3 and CH2 radicals only have spatially and time averaged densities in the order of \(10^{11} \text{ m}^{-3}\). The reason why most of these radicals, except CH2, do not vary a lot as a function of time within one period is because the formation of all these radicals proceeds in a quite similar way, i.e., either directly or indirectly related to electron impact dissociation of the inlet gases. However, CH2 is rapidly destructed in reactions with CO2, one of the inlet gases, which is thus present at high density, explaining the significant drop in the CH2 density as a function of time, while H, O, OH, HO2, CHO, and CH3 react away through collisions with other radicals or molecules at lower densities. The most abundant radicals will determine the different reaction pathways for the formation of different end products (see below). Compared to our previous results for the CO2/CH4 mixture,87 the higher order hydrocarbon radicals, such as C2H3 and C2H5, as well as the oxygenate radicals, such as CH3O, CH2OH, and CH3O2, are formed to a lower extent in CO2/H2 which is logical, as there is no hydrocarbon precursor (CH4) in the inlet gas mixture, resulting in a lower overall carbon fraction than in CO2/CH4.

The spatially and time averaged densities of the most abundant radicals in CO2/H2 are plotted in Figure 3 as a function of the initial CO2 in the mixture. Upon rising the initial fraction of CO2 between 10 and 90%, the densities of the H, CH3, and CH2 radicals drop by 1 order of magnitude, because these radicals are directly or indirectly formed out of H2. On the other hand, the densities of O, OH, HO2, and CHO, as well as the other O-containing radicals (not shown), increase by one order to several orders of magnitude upon rising the inlet fraction of CO2, as they are directly or indirectly formed out of CO2.

Figure 2. Spatially averaged radical densities as a function of time for a 50/50 CO2/H2 gas mixture, as well as the applied sinusoidal voltage (gray, right axis in (a)) for four periods of the applied voltage (i.e., between 0.0016 and 0.002 s).
The most abundant ion in the CO\(_2\)/H\(_2\) gas mixture is H\(_3\)O\(^+\), with a spatially and time averaged density in the order of 10\(^{15}\) m\(^{-3}\), hence comparable to the electron density (cf. above). The other ion densities are 2 or even more orders of magnitude lower, and thus the ion densities are much lower than the spatially and time averaged densities of the most abundant radicals, indicating that the ions play a minor role in the plasma chemistry (see also sections 3.3 and 3.4 below). Therefore, we do not go in further detail on the ion densities.

The densities of the stable molecules do not exhibit a periodic behavior like the electrons and the radicals. The reason is that their formation rates are typically much larger than their loss rates, in contrast to the radicals and ions. The densities of the molecules formed during the hydrogenation of CO\(_2\), i.e., CO, higher order hydrocarbons and oxygenates, exhibit a rising trend as a function of time, because their net production is higher than their net consumption. This will continue until periodic steady state will be reached. Indeed, when the densities of the reaction products rise, the rates of their consumption reactions will rise as well, until a balance is reached between production and consumption. The inlet gases, on the other hand, have a higher net consumption, so their densities show a gradual decrease as a function of time again until periodic steady state will be reached. The initial densities of the inlet gases, at a 50/50 gas mixture, both amount to 1.22 \(\times\) 10\(^{25}\) m\(^{-3}\), as calculated from the ideal gas law at 300 K and 1 atm. The conversion is most pronounced in the first few seconds, and afterward the densities of the molecules do not significantly change anymore for a longer residence time, as is clear from Figure 4, for both CO\(_2\) and H\(_2\), and the most abundant products.

Figure 3. Spatially and time averaged (taken over 1 period, i.e., between 0.0019 and 0.002 s) radical densities as a function of the initial CO\(_2\) fraction in the CO\(_2\)/H\(_2\) gas mixture.

![Figure 3](image1)

The Journal of Physical Chemistry C

Figure 5 illustrates the densities of the various molecules in the CO\(_2\)/H\(_2\) gas mixture as a function of the initial CO\(_2\) fraction, after a residence time of 5 s. The most abundant reaction products are CO, H\(_2\)O, CH\(_4\), CH\(_2\)O, C\(_2\)H\(_6\), O\(_2\), and CH\(_3\)OH (more or less in order of decreasing density). This is in good agreement with the end products reported by Eliasson et al.,\(^{95}\) i.e., CH\(_4\) and CH\(_3\)OH, Hayashi et al.,\(^{96}\) i.e., CO and CH\(_4\), Kano et al.,\(^{97}\) i.e., CO, CH\(_4\), and CH\(_3\)OH, and Zeng et al.,\(^{98}\) i.e., CO and H\(_2\)O as major products, a small amount of CH\(_4\) and traces of C\(_2\)H\(_6\) for similar CO\(_2\)/H\(_2\) discharges. Note that Hayashi et al.\(^{96}\) also detected the formation of dimethyl ether and formic acid, which are not included in our model as mentioned above. However, our model provides us more insight in the formation of other higher hydrocarbons and oxygenates. The densities of CO and H\(_2\)O, which are by far the most abundant products, are almost not influenced by the inlet fraction of CO\(_2\) (see Figure 5a). For H\(_2\)O, a maximum is obtained at an initial CO\(_2\) fraction of 50%. This can be explained because H\(_2\)O is formed out of the collision of OH and H radicals. From Figure 3 it is clear that the H density decreases while the OH density increases with increasing initial fraction, after a residence time of 5 s.
CO2 fraction, resulting in an optimum ratio at an inlet concentration of 50% CO2. Furthermore, as will be clear from section 3.2 below, the CO2 conversion drops upon increasing initial CO2 fraction in the mixture, and thus, the same applies to the yield of CO. On the other hand, a higher initial CO2 fraction in the mixture allows for more CO2 to be converted, and as both effects compensate each other, the effective CO2 conversion remains constant, explaining why the CO density is constant for all CO2/H2 gas mixtures (see Figure 5a).

On the other hand, the densities of O2, H2O2, and O3 increase by several orders of magnitude upon increasing initial fraction of CO2, which is logical, as they are directly formed out of the CO2 splitting products (O and O2). The densities of the higher hydrocarbons (CnHm) generally drop upon increasing initial fraction of CO2, which can be explained by the higher conversion of CO2 at lower initial fraction of CO2 (see section 3.2 below) resulting in higher densities of CH2 and CH3 radicals, as is clear from Figure 3 above, which are the building blocks for the higher hydrocarbons. However, an optimum seems to be reached for the 50/50 CO2/H2 gas mixture (see Figure 5b). Indeed, these higher hydrocarbons need the C from CO2 as their building block, but they also need the H originating from H2, and therefore an equal presence of both inlet gases seems to be preferable.

The same is true for the densities of CH3O and CH2OH and the other oxygenates, as is clear from Figure 5(c), although the hydroperoxides (CH3OOH and C2H5OOH) generally increase with rising initial fraction of CO2. Compared to our previous results on the formation of higher hydrocarbons and oxygenates in CH2/O2 and CH4/O2 mixtures, it is clear that, except for CO and H2O, the densities of the most important end products are now several orders of magnitude lower. The reason for this is that the conversion of CO is very low in all gas mixtures (see section 3.2 below), while CH4 as C building block was more easily converted, and therefore, the crucial radicals in the formation process of higher hydrocarbons and oxygenates, such as CH2 and CH3, can be produced at a much higher density in mixtures with CH4 than in the CO2/H2 mixture under study here. Note that the trends illustrated in Figure 5 correspond to a residence time of 5 s; however, the different molecules might have their maximum densities at a different residence time for the different gas mixing ratios studied (see for instance De Bie et al. for the CH2/O2 and CH4/O2 mixtures); therefore, the trends depicted in Figure 5 are not necessarily the same at other residence times.

Altering the inlet gas mixing ratio also affects the H2/CO (syngas) ratio. A variable H2/CO molar ratio is useful, as it allows the mixture to be used for various industrial synthesis processes, while classical processes, like steam reforming, partial oxidation, and dry reforming typically produce syngas with a H2/CO molar ratio greater than 3, less than 2, and less than 1, respectively. The H2/CO ratio, as obtained from our calculations, decreases with increasing initial CO2 fraction, which is logical. It ranges from S4 (at 10% CO2), which is not useful for industrial synthesis processes, to 3 (at 90% CO2), which can be of interest as this is similar to the molar ratio produced by steam reforming (see above).

3.2. Conversion of CO2 and H2 and Yields and Selectivities of the Main Reaction Products. The following definitions are used for calculating the conversion X of the inlet gases, and the yields Y and the selectivities S of most interesting end products, such as CO, the higher hydrocarbons and higher oxygenates:

\[X_{\text{CO2}}/H_2 = \frac{n_{\text{CO2}}/H_2_{\text{converted}}}{n_{\text{CO2}}/H_2_{\text{feed}}} \times 100\% \] (1)

\[Y_{\text{CH}_4/O_2} = \frac{x \times n_{\text{CH}_4/O_2}}{n_{\text{CO2}}_{\text{feed}}} \times 100\% \] (2)

\[S_{\text{CH}_3OOH} = \frac{x \times n_{\text{CH}_3OOH}}{n_{\text{CO2}}_{\text{converted}}} \times 100\% \] (3)

The parameter x in these definitions denotes the stoichiometric balance coefficient, which corresponds also to the index in the compound name of CH3OOH. Note that the yield and selectivity of CO are calculated with \(Y_{\text{CH}_4/O_2} \) and \(S_{\text{CH}_3OOH} \), respectively, with \(y = 0 \), and that the yield and selectivity of the higher hydrocarbons (CnHm) are calculated with \(Y_{\text{CH}_4/O_2} \) and \(S_{\text{CH}_3OOH} \), respectively, with \(z = 0 \).

Table 2 shows the maximum conversions of the inlet gases, i.e., CO2 and H2, and the maximum yields and corresponding selectivities of CO and CH4 for different CO2/H2 gas mixtures:

<table>
<thead>
<tr>
<th>initial CO2 fraction</th>
<th>X (CO2)</th>
<th>X (H2)</th>
<th>Y (CO)−S (CO)</th>
<th>Y (CH4)−S (CH4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7.0</td>
<td>64</td>
<td>6−86</td>
<td>0.2−2.2</td>
</tr>
<tr>
<td>30</td>
<td>3.6</td>
<td>33</td>
<td>3−90</td>
<td>0.03−0.9</td>
</tr>
<tr>
<td>50</td>
<td>4.4</td>
<td>44</td>
<td>4−87</td>
<td>0.03−0.6</td>
</tr>
<tr>
<td>70</td>
<td>2.1</td>
<td>33</td>
<td>2−89</td>
<td>0.003−0.2</td>
</tr>
<tr>
<td>90</td>
<td>1.9</td>
<td>58</td>
<td>2−92</td>
<td>0.0003−0.02</td>
</tr>
</tbody>
</table>

All values are noted as percentages.

selectivities of CO and CH4, for different CO2/H2 gas mixtures. These maximum values are in all cases obtained for a residence time of 20 s. The conversion of CO2 clearly decreases with increasing initial CO2 fraction in the mixture, from 7% at 10% CO2 in the mixture to roughly 2% at 90% CO2 in the mixture. This trend is in good agreement with the results of Zeng et al., who reported that the conversion of CO2 increases almost linearly with the increase of the H2/CO2 molar ratio at a fixed flow rate. A similar trend was earlier observed in CO2/CH4, but the conversion of CO2 was a factor of 3 higher at a high initial CH4 fraction (i.e., 90%) compared to a high initial H2 fraction of 90%. This can be explained because CH4, which is a direct dissociation product of CH4, is much more abundant in CO2/CH4 than in CO2/H2 and thus provides an extra and very important loss process for CO2 in a CO2/CH4 mixture. The H2 conversion is significantly larger, i.e., between 30 and 60%, but no clear trend can be observed as a function of gas mixing ratio, because the discharge characteristics are strongly affected by the initial gas mixing ratio. As CO is directly produced by electron impact dissociation of CO2 (see section 3.3 below), the yield of CO shows the same trend as the conversion of CO2, with values of only 2–6%. Moreover, CO is the only C containing molecule directly produced out of CO2, and therefore the selectivity of CO is in all cases around 90%. CH4 is only formed with a selectivity above 1% at a low initial CO2 fraction, i.e., a high initial H2 fraction, which is logical. The yields of C2H6, CH3O, and CH2OH are one or 2 orders of magnitude lower than the yield of CH4, while the yields of
other higher hydrocarbons and oxygenates are even more negligible, which is of course the direct result of the rather low conversion of CO$_2$ in all gas mixing ratios. Note that also some sticking of the C atoms and hydrocarbon species at the walls occurs, which explains why the sum of the selectivities is not equal to 100%. This formation of a C-containing layer on the electrodes was indeed also experimentally observed in the DBD reactor under study for a pure CO$_2$ discharge.30,115

3.3. Dominant Reaction Pathways. To better explain the above trends, and to find out how the densities of the most important products can be optimized, it is crucial to obtain a better insight in the underlying reaction chemistry. Therefore, we will now discuss the dominant reaction pathways for the conversion of the inlet gases into the most important value-added products, i.e., CO, CH$_4$, CH$_3$OH, and CH$_2$O, for the entire range of gas mixing ratios.

3.3.1. Dissociation of CO$_2$ and H$_2$. The dominant reactions for CO$_2$ consumption (and production), as well as the time-averaged total production rate, total loss rate and net loss rate, as a function of the initial CO$_2$ fraction in the gas mixture are depicted in Figure 6. Although the consumption of CO$_2$ is mostly relevant in this work, we also show the production processes, because part of the CO$_2$ dissociation products will again recombine into the formation of CO$_2$. However, the total loss rate is larger than the total production rate, as is clear from Figure 6, thus leading to a net loss of CO$_2$ (i.e., conversion into other products). Furthermore, the total formation and loss rate generally increase upon larger initial CO$_2$ fraction in the mixture, which is logical. The most important channel for consumption of CO$_2$ is electron impact ionization toward CO$_2^+$. However, CO$_2^+$ immediately reacts back toward CO$_2$ upon charge transfer with H$_2$O molecules. Therefore, the most
important reaction for consumption of CO$_2$ is effectively electron impact dissociation toward CO. This result was also obtained in earlier simulations carried out in our group for pure CO$_2$ splitting.27 Furthermore, the relative importance of the various consumption and production processes is more or less independent from the gas mixing ratio, as is clear from Figure 6.

In Figure 7 the most important reactions for consumption (and production) of H$_2$ are shown. At an initial CO$_2$ inlet fraction of 10%, electron impact dissociation is the most important loss process for H$_2$, but part of the H atoms will recombine back into H$_2$ or react with CHO radicals into H$_2$ and CO. At an inlet fraction of 90% CO$_2$, the reaction of H$_2$ with H$_2$O$^+$ toward H$_3$O$^+$ becomes the most important loss mechanism. However, the latter is not due to the high absolute rate of this reaction but rather because the rate of electron impact dissociation drops. Indeed, it is clear from Figure 7 that the total loss rate of H$_2$ is much lower at 90% than at 10% CO$_2$ content, because there is of course less H$_2$ in the mixture. Nevertheless, from comparing Figures 6 and 7, it is clear that the net consumption of H$_2$ is much higher than the net consumption of CO$_2$. Indeed, the net loss rate of H$_2$ drops from 7×10^{17} cm$^{-3}$ s$^{-1}$ at 10% CO$_2$ to 7×10^{16} cm$^{-3}$ s$^{-1}$ at 90% CO$_2$, while the net loss rate of CO$_2$ is virtually constant around 10^{17} cm$^{-3}$ s$^{-1}$ for all gas mixing ratios. This explains also why the conversion of H$_2$ is much higher than the conversion of CO$_2$ (see section 3.2 above).

3.3.2. Formation of CO, CH$_3$O, CH$_2$O, and CH$_3$OH. In Figure 8 the most important channels for the production (and loss) of CO are illustrated as a function of the initial CO$_2$ fraction in the gas mixture. The most important production process appears to be the reaction between H atoms and CHO radicals, forming H$_2$ and CO, but this reaction is counterbalanced by the most important loss process, i.e., the recombination of H with CO into CHO radicals. Therefore, the most important effective
reaction for the formation of CO is electron impact dissociation of CO₂. On average there is a net formation of CO, with a rate in the order of 10^{16} \text{ cm}^{-3}\text{s}^{-1}, slightly increasing upon higher initial CO₂ fraction in the mixture, which is logical.

The most important reactions for production (and loss) of CH₄ are depicted in Figure 9 as a function of the initial CO₂ fraction in the gas mixture. The production of CH₄ seems to be driven by only two reactions, i.e., the three-body recombination reaction between CH₃ and H radicals, and at a lower initial fraction of CO₂ also the charge transfer reaction between CH₅⁺ and H₂O. However, the latter reaction is partially balanced by the loss of CH₄ via a charge transfer reaction with H₃⁺. At a higher initial CO₂ fraction, the charge transfer reaction with CO₂⁺ becomes the most important loss mechanism for CH₄. A similar trend is observed for the net production rate of CH₄ as a function of the initial CO₂ fraction as for the net loss rate of H₂ (see Figure 7 above). Indeed, the dissociation of H₂ leads to the formation of H radicals which are needed for the formation of CH₄. An optimum is obtained for an initial CO₂ fraction of 10%, as is logical, and can be explained by the maximum densities found for the CH₃ and H radicals, as shown in Figure 3 above.

Figures 10 and 11 show the dominant reactions for production (and loss) of CH₂O and CH₃OH, respectively, as a function of the initial CO₂ fraction in the gas mixture. The reaction between CO₂ and CH₂ radicals appears to be the most important channel for the production of formaldehyde at low initial CO₂ fractions, as was also observed for a CO₂/CH₄ mixture. At higher initial CO₂ fractions, CH₂O is also formed to some extent out of two CHO radicals. Furthermore, CH₂O is mainly lost upon collision with H atoms, yielding CHO and H₂, although the collisions with O atoms or OH radicals, yielding CHO and OH or H₂O, respectively, become gradually more important at higher CO₂ fractions, which is logical.

The total formation and loss rates reach a clear maximum at 50% CO₂ in the mixture, which is explained by the fact that at
these conditions an optimum ratio of CH₄ (see the maximum in Figure 3 above) and CO₂ is present in the gas mixture. As the total formation and loss rates are more or less equal to each other, the net formation rate of CH₂O is very low, and increases from 10¹¹ to 10¹³ cm⁻³ s⁻¹ upon rising CO₂ fraction. This explains why the CH₂O density rises slightly upon increasing CO₂ fraction in the mixture, as illustrated in Figure 5 above.

As is clear from Figure 11, the most important channel for the production of methanol, as predicted by our model, is the three-body reaction between CH₃ and OH radicals, like was also the case in the CO₂/CH₄ mixture studied before. However, different from the CO₂/CH₄ mixture, the three-body reaction between CH₂OH and H radicals is now also an important production channel. Most of the CH₂OH produced is also consumed again upon collision with either H atoms, OH radicals, or O atoms, so the net formation rate of CH₂OH varies from 10¹¹ to 10¹² cm⁻³ s⁻¹. An optimum production of CH₂OH is again observed at 50/50 CO₂/H₂ because at these conditions an optimum ratio of CH₃ and OH (see Figure 3 above) is present in the gas mixture, and this explains why the CH₂OH density reaches a maximum at this mixing ratio, as shown in Figure 5 above.

3.4. Overall Reaction Mechanism for the Hydrogenation of CO₂ into Valuable Products. Figure 12

Figure 12. Dominant reaction pathways for the conversion of CO₂ and H₂ into various products, in a 50/50 CO₂/H₂ gas mixture. The thickness of the arrow lines is proportional to the rates of the net reactions. The stable molecules are indicated with black rectangles.

summarizes the dominant reaction pathways for the conversion of CO₂ and H₂ in a 50/50 CO₂/H₂ gas mixture. Note that the thickness of the arrow lines is proportional to the rates of the net reactions. The conversion starts with electron impact dissociation of CO₂, yielding CO and O radicals. Simultaneously, and much more pronounced, is the electron impact dissociation of H₂F, resulting in the formation of H radicals (cf. the thickness of the arrow line). Radical recombination reactions of the O and H radicals lead to the formation of OH radicals, which recombine further into H₂O, and this explains why H₂O is also formed at relatively high density, as shown in Figure 5 above. However, this is of course of lesser interest than CO as valuable product.

CO will partially react back into CO₂ mainly through the formation of CHO radicals. Note that in this gas mixture, the major reaction from CO back into CO₂ indeed proceeds through CHO, as the rate of the reaction (CO + H + M → CHO + M) is in the order of 10¹⁷ cm⁻³ s⁻¹, and the rate of the subsequent formation of CO₂ through the reaction (CHO + O → CO₂ + H) is about 7 × 10¹⁵ cm⁻³ s⁻¹, while the rate of the direct reaction (CO + O + M → CO₂ + M) is only in the order of 10¹⁵ cm⁻³ s⁻¹. The H atoms thus contribute significantly to the back reaction of CO into CO₂. It is clear from the thick arrow line from H to CHO in Figure 12 that the formation of CHO out of CO and H indeed occurs at a very high rate. The reason why the arrow line from CO to CHO is much thinner is because CHO also reacts back into CO upon collision with H (CHO + H → CO + H₂), so the net reaction from CO to CHO is smaller than the net reaction from H to CHO. Furthermore, electron impact dissociation of CO results in the formation of C radicals, which react further into CH, CH₂, C₂H₂, and CH₃ radicals in several successive radical recombination reactions. The formed CH₂ radicals react with CO₂ into the formation of CH₂O, as was also shown in Figure 10 above. The CH₃ radicals easily form CH₄, which is much more favored (i.e., the rate is 1 order of magnitude larger) than the formation of CH₂OH out of CH₂, CH₄ partially reacts further into higher hydrocarbons (CₙHₙ).

From the reaction scheme, it is clear that a lot of subsequent radical reactions are necessary for the formation of (higher) hydrocarbons and oxygenates, such as CH₄, CH₃H₂, CH₂O, and CH₃OH, which explains the very low yields and selectivities of these end products (see section 3.2 above). Indeed, the lack of direct formation of CH₄ and CH₂ in CO₂/H₂, which is important in CO₂/CH₄ gas mixtures, combined with the very low conversion of CO₂, which is again due to the absence of CH₃ as important collision partner for the loss of CO₂, makes a CO₂/H₂ mixture under the present conditions less interesting for the formation of higher hydrocarbons and oxygenates than a CO₂/CH₄ mixture. This is especially true because H₂ itself is a useful product, while CH₄ besides being a fuel itself, also greatly contributes to global warming, and thus, the simultaneous conversion of CO₂ and CH₄ will reduce the concentration of two greenhouse gases. Moreover, CO₂/CH₄ mixtures are available from biomass installations, and their simultaneous conversion can be seen as a direct valorization of biogas, instead of the energy intensive biogas upgrading to a CH₄-rich gas by removing CO₂. Another possibly interesting H-source to be added to a CO₂ plasma to produce value added chemicals, could be water, and the combined CO₂/H₂O conversion could even mimic the natural photosynthesis process. However, recent investigations in our group have illustrated that this gas mixture is also not able to produce oxygenates above the ppm range in a DBD plasma. Moreover, adding H₂O to a CO₂ plasma was found to even yield a drop in the CO₂ conversion, because the OH radicals formed out of H₂O splitting in the plasma, recombine with CO molecules back into CO₂. Moreover, as H₂O is electronegative, it will trap the electrons, making the discharge less stable, and there will also be less electrons available for CO₂ dissociation. Hence, all this indicates that a CO₂/H₂O DBD plasma (without catalysts) might also not be an optimal choice for CO₂ conversion into value-added chemicals.

In general, we believe that a CO₂/H₂ mixture can be of interest for producing CO to obtain gas mixtures with a specific H₂/CO ratio. However, besides the CO₂ conversion and CO yield, also the energy efficiency of the CO₂ conversion into CO is a key performance indicator for this technology. The energy efficiency is calculated from the CO₂ and H₂ conversion, the reaction enthalpy (ΔHᵣₑₚ), and the specific energy input (SEI), with the following formula:
The overall conversion is obtained by multiplying the absolute conversion of the inlet gases with their inlet fraction:
\[X_{\text{overall}}(\%) = X_{\text{CO}_2}(\%)[\text{CO}_2](\%) + X_{\text{H}_2}(\%)[\text{H}_2](\%) \]
(5)

The SEI is obtained from the plasma power, divided by the gas flow rate, as follows:
\[\text{SEI} \left(\frac{\text{kJ}}{\text{mol}} \right) = \frac{\text{plasma power (kW)}}{\text{flow rate (L/min)}} \times 60 \left(\frac{\text{s}}{\text{min}} \right) \]
(6)

As CO is the main product in our study, the reaction we consider for calculating the energy efficiency for the hydrogenation of CO₂ is as follows:
\[\text{CO}_2 + \text{H}_2 \rightarrow \text{CO} + \text{H}_2\text{O} \]
(7)

\[\Delta H_{\text{f}} = 41.2 \text{kJ/mol} = 0.427 \text{ eV/molecule} \text{ (at 298 K)} \]
(8)

Using these formulas, an energy efficiency of 0.92% is obtained at a residence time of 2 s for a corresponding conversion of 1.1% CO₂ and 8.0% H₂ in 50/50 CO₂/H₂. Similar values are obtained for the other gas mixtures. These values are very low, indicating that a relatively high SEI of 8.3 kJ L⁻¹ is required to obtain only a conversion of 1.1% CO₂. Note that this energy efficiency is lower than the values obtained for pure CO₂ splitting or dry reforming of methane, which are typically in the order of 1–10%. However, also the latter values are still quite low, and indicate that a normal DBD reactor might not be competitive with classical thermal processes for CO₂ conversion. Indeed, the limited energy efficiency is a major drawback of a DBD plasma, as also reported in literature (e.g., Aerts et al.27). However, this value can be improved by inserting a dielectric packing in the DBD reactor. Indeed, the dielectric packing yields enhanced electric fields in the plasma, due to polarization of the dielectric beads, resulting in higher electron energies. The latter gives rise to more electron impact excitation, ionization, and dissociation of CO₂ for the same applied power and thus a higher energy efficiency. This is indeed illustrated in several papers, where simultaneous improvements in both the CO₂ conversion and energy efficiency of a factor 2 were reported.24,28,117

Furthermore, this so-called packed bed DBD reactor can also be combined with a catalyst packing (or catalytic coating on the dielectric packing), yielding so-called plasma catalysis. This will enable the selective production of value-added chemicals, like specific oxygenated compounds. The latter was demonstrated by Eliasson et al.,95 who reported much higher methanol yields in the presence of a catalyst in the plasma, and by Zeng et al.,96 who found that the combination of a plasma with a catalyst enhances the conversion of CO₂ by 7–36%, as well as the yield and energy efficient production of CO.

4. CONCLUSIONS

A 1D fluid modeling study for the hydrogenation of CO₂ in a DBD plasma was carried out for different CO₂/H₂ gas mixing ratios. The densities of the various plasma species as a function of the residence time and the gas mixing ratio were discussed. The spatially averaged densities of the electrons, radicals and ions produced in the plasma exhibit periodic behavior as a function of time, following the period of the sinusoidal applied voltage. The most abundant radicals are H, O, OH, HO₂, CHO, CH₂, and CH₄. The densities of the molecules formed during the hydrogenation of CO₂, i.e., CO, higher order hydrocarbons and oxygenates, exhibit a rising trend as a function of time, because their net production is higher than their net consumption. The most abundant reaction products are CO, H₂O and CH₄, and to a lower extent also CH₃OH, CH₄, O₂ and CH₃OH. This is in good agreement with reported results from literature for similar CO₂/H₂ discharges. Altering the inlet gas mixing ratio did not drastically affect the densities of the formed higher hydrocarbons and oxygenates, as the conversion of CO₂ was found to be very low in all gas mixing ratios. We have also presented the calculated conversions of the inlet gases and the maximum yields and corresponding selectivities of the main reaction products. It is clear that the conversion of CO₂ is rather low (i.e., in the order of 2–7%) in all gas mixtures, and much lower than in a CO₂/CH₄ mixture, where typical conversions in the order of 3–20% are obtained at similar conditions. The reason is the abundance of CH₄ radicals in the latter mixture, which significantly contribute to the loss of CO₂, but their density is very low in the CO₂/H₂ mixture. The H₂ conversion was calculated to be about 30–60%, depending on the gas mixing ratio. CO was found to be the only value-added end product with a high selectivity.

Note that the gas conversion might be slightly underestimated in the model, because the 1D fluid model does not account for filament formation in the DBD reactor, but simply assumes a homogeneous plasma. Hence, the calculated mean electron energy in this model might be somewhat lower than typical values expected inside the microdischarge filaments, although the values obtained in our model are still in the same order as typical values reported for the filaments in literature. As a consequence, electron impact excitation, ionization and dissociation reactions might be slightly underestimated, but we expect that the effect will be minor. Moreover, the subsequent plasma chemistry governing the gas conversion is mainly attributed to radical reactions, which also occur in between the filaments, so we expect that the calculations still give a realistic picture of the plasma chemistry. This can also be deduced from the reasonable agreement with experimental data from literature, for the CO₂/H₂ mixture, but also for the pure CH₄ plasma and the CH₄/CO₂ and CH₄/O₂ mixtures that we investigated previously, using the same model assumptions. Nevertheless, in spite of this completely different approach, similar results in terms of plasma chemistry, gas conversion, and product formation are observed, indicating that the present 1D fluid model is also a reasonable approach to model the gas conversion in a DBD plasma.

Finally, the underlying plasma chemistry governing the conversion of CO₂ and H₂ into the various products was analyzed in detail. The dominant reaction pathways for the consumption of CO₂ and H₂ and the production and loss of some interesting end products, i.e., CO, CH₃OH, CH₃O₂ and CH₃OH, were discussed. It is clear from our results that a...
higher conversion of CO₂, as well as a higher density of CH₂ and CH₃ radicals, would be necessary in order to obtain higher yields of the desired end products. For the conditions under study, only CO is formed at an acceptable level. Thus, it is clear that a CO₂/H₂ mixture is not very suitable for the production of other value added chemicals besides CO, and a CO₂/CH₄ mixture is more appropriate, because of the presence of CH₂ and CH₃ radicals. The use of a catalyst can possibly increase the formation of some desired oxygenates, as is indeed also shown by Eliasson et al. and Zeng et al.

AUTHOR INFORMATION

Corresponding Author

E-mail: annemie.bogaerts@uantwerpen.be Telephone: +32 (0)3 265 2377.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was carried out using the Turin HPC infrastructure at the Càlcula core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. The authors also acknowledge financial support from the IAP/7 (Interuniversity Attraction Pole) program “PSI-Physical Chemistry of Plasma-Surface Interactions” by the Belgian Federal Office for Science Policy (BELSPO) and from the Fund for Scientific Research Flanders (FWO).

REFERENCES

(2) European Seventh Framework Programme A Vision for Smart CO₂ Transformation in Europe; 2015.

Tu, X.; Gallon, H. J.; Twigg, M. V.; Gorry, P. A.; Whitehead, J. C. Dry Reforming of Methane over a Ni/Al₂O₃ Catalyst in a Coaxial

