Transport and accumulation of plasma generated species in aqueous solution†

C. C. W. Verlackt, * W. Van Boxem and A. Bogaerts ✉ *

The interaction between cold atmospheric pressure plasma and liquids is receiving increasing attention for various applications. In particular, the use of plasma-treated liquids (PTL) for biomedical applications is of growing importance, in particular for sterilization and cancer treatment. However, insight into the underlying mechanisms of plasma–liquid interactions is still scarce. Here, we present a 2D fluid dynamics model for the interaction between a plasma jet and liquid water. Our results indicate that the formed reactive species originate from either the gas phase (with further solvation) or are formed at the liquid interface. A clear increase in the aqueous density of H_2O_2, HNO_2/NO_2^- and NO_3^- is observed as a function of time, while the densities of O_3, HO_2/O_2^- and $ONO2/ONO^-2$ are found to quickly reach a maximum due to chemical reactions in solution. The trends observed in our model correlate well with experimental observations from the literature.

Introduction

The use of cold atmospheric plasmas (CAPs) for medical applications has grown into a large research field, attracting ever-growing interest in various scientific disciplines. Among these applications are the use of CAPs for wound healing,1,2 sterilization,3,4 blood coagulation5,6 and even cancer treatment.7,8 Indeed, reactive species generated by CAPs (i.e., reactive oxygen and nitrogen species) can affect the signaling pathways inside treated cells, which influences their biological activity, inducing either cell proliferation or apoptosis.9 A multitude of CAP sources, specifically to be used in biomedical applications, have been developed in the past decades by various research groups worldwide.10–14 Among these sources are dielectric barrier discharges (DBDs) and the so-called floating-electrode DBDs, atmospheric pressure plasma jets (APPJs), including microscale APPJs, and the so-called plasma needle. As a result, a wide variety of setups, parameters and conditions are available for biomedical applications. Additionally, a distinction can be made between direct and indirect treatment. In direct treatment, the treated (biological) substrate forms an active part of the plasma discharge, e.g., playing a role as a counter-electrode in the case of a DBD. On the other hand, in indirect treatment, the plasma discharge does not come in contact with the treated substrate, e.g., when the plasma plume of a jet does not reach the substrate.

Recently, a novel approach for biomedical plasma treatment has been introduced and became the subject of increasing investigation:15–17 the use of Plasma Treated Liquids (PTL), often also called Plasma Activated Liquids (PAL) or Plasma Activated Water (PAW), or (the quite popular term) Plasma Activated Media (PAM). Indeed, several different terms are used in the literature, denoting liquids processed by plasma, but because of the absence of an established terminology, we will use the term PTL in this work. Using PTL, biological substrates are treated with a liquid that has been in contact with a plasma source prior to the biomedical application. In this way, the plasma generated species are induced in a liquid. This liquid is then used to transport these (usually more long-lived) plasma-induced chemicals to the biological substrate. This enables a more homogeneous treatment of the tissue and the ability to store the plasma activity.17 In this way, plasma treatment can be assured even at moments or at places where no plasma source is available. Furthermore, the substrate only comes in contact with liquid-soluble and long-lived reactive oxygen and nitrogen species (RONS) such as H_2O_2, HNO_2 and HNO_3, eliminating the effects of the plasma generated radicals and UV radiation. Finally, PTL can be injected inside the tissue whereas direct CAP treatment transports RONS in the first few layers only18,19 due to the often high reactivity and the short half-life of most plasma species.20

In literature, a variety of different liquids have been used to generate PTLs, ranging from pure water and buffered solutions to complex biomedical media.15,21–24 The choice of liquid greatly influences the resulting PTL in terms of the concentration of species, acidity, etc.21 In a recent study, performed in collaboration with the Ruhr Universität Bochum, we reported...
that the plasma treatment of non-buffered water results in a noticeable decrease in pH.25 This was countered by using buffered solutions such as PBS (Phosphate Buffered Saline). Additionally, aqueous liquids often contain ions like Cl−, which in an oxidative environment forms hypochlorous acid (HOCl), showing strong antibacterial activity.26 Being a reactive species, HOCl is known to interact and react not only with biomolecules, such as DNA and proteins, but also with other reactive species in solution, like H\textsubscript{2}O\textsubscript{2} and O\textsubscript{3}, influencing the plasma chemistry in the liquid.27–29

In addition, a wide range of biological media can also be used, leading to the creation of Plasma Treated Media (PTM) or PAM (see above). Note that PTM differs significantly from (buffered) plasma treated water (PTW) as several additional long-lived reactive species can be generated, such as amino acid peroxides. This offers a new dimension for biomedical applications as these biochemical reactive species (often having a longer life-time than most RONS) can migrate to cells which are far away from the treated area.22,30–33 Moreover, the presence of certain amino acids (i.e., phenylalanine, alanine, histidine, arginine, tyrosine, and lysine) has proven to enhance the anti-tumor activity of PTM.22 However, this also limits the storage of RONS in PTM as they will be constantly involved in reactions with the biomolecules present in the medium.37

Although the confidence for the applicability and added value of PTLs in plasma medicine is clearly increasing,34–39 insight into the fundamental mechanisms of the generation of reactive species and in the activity of PTLs is still lagging.40 While experiments can provide useful information, computational approaches can also be of great value, and are ideally suited to provide answers to the open questions. Babaeva and Kushner41 computationally investigated the interaction between DBD plasma filaments and dry wounds.41 This was expanded by introducing a liquid layer in a 0D model42 to investigate the interaction and penetration of the electric fields on liquid covered wounds. Chen \textit{et al.}43 used a 0D model to evaluate the plasma–liquid chemistry for a He/O\textsubscript{2} DBD using a set of 21 plasma species and 267 reactions,43 in the framework of treating biofilms and biological tissues. In addition, Suda \textit{et al.}44 presented a 0D model for a He/N\textsubscript{2} DBD, investigating the effect of the gap on the surface voltage as well as the accumulation of plasma species in a liquid layer.44 They used a model containing 10 species and 20 reactions. Another important computational study on the interactions of DBD with a liquid layer was performed by Tian and Kushner.45 They presented a 2D fluid model for the accumulation of reactive species in the liquid. The obtained knowledge was extended by Lietz and Kushner,46 who used a 0D model to gain more detailed insight into the plasma–liquid chemistry when treating liquid covered tissue with a DBD. Finally, Liu and coworkers47,48 provided interesting insight into the propagation of reactive species in the liquid phase and investigated the effect of the gap on the simulated plasma chemistry.47,48 For this purpose, they used an extensive 0D model containing 53 RONS and 624 reactions to calculate the chemistry both in the gas and liquid phases.

The above studies all focus on the interaction of DBD plasma with a liquid. However, only a few papers report on modeling the interactions between a plasma jet and a liquid surface. Norberg \textit{et al.}49 investigated the impact of the operating voltage on the generation and accumulation of reactive species in a liquid layer using a 2D model for a He plasma jet.49 This study provided insight into the difference between direct (touching) and indirect (non-touching) treatment of a liquid layer using a plasma jet. In 2016, the authors expanded their model with the aim of elucidating the delivery of an electric field from an APPJ to liquid-covered tissue and again evaluated the effect of the voltage on the calculated system.50 Finally, essential understanding in the accumulation of species in the liquid layer was obtained by Lindsay and Graves.51 They investigated the transport of a limited number of reactive species produced by a He plasma jet to liquid water, using a 2D model containing 13 species and 23 reactions.

In this work, we present a 2D axisymmetric fluid model to investigate both the accumulation and reactivity of biologically relevant reactive species in a buffered aqueous solution during the treatment with an Ar plasma jet, based on the kINPen, flowing in ambient air (78.09% N\textsubscript{2}, 20.95% O\textsubscript{2} and 0.96% H\textsubscript{2}O). This plasma jet is widely used in experiments,1,52–56 and even in clinical studies,57–59 but its interaction with a liquid has not been described in a two-dimensional model system before. A photograph of the kINPen plasma jet is presented in Fig. 1. We focus especially on the biologically relevant species. In total, 20 gaseous and 22 aqueous species are included, as well as 57 and 42 reactions in the gas and liquid phases, respectively.56,60 Using an Ar plasma jet with a flow rate of 3 slm, we expect high gas velocities,61 which will have a tremendous impact on convection, and therefore on the plasma chemistry in both the gas and the liquid. Therefore, we focus especially on these effects, providing information on the accumulation and reactivity of reactive species in the liquid phase during treatment.

![Photograph of the kINPen IND plasma jet, as used during the treatment of liquids.](image-url)
Results and discussion

Flow behavior of the gas and liquid phase

As explained in the Computational setup, the first step in the investigation is to simulate both the gas and liquid flow, until a steady-state is reached. Subsequently, the gas and liquid flow velocities are introduced as input in the time-dependent model. Fig. 2 illustrates the steady-state gas and liquid flow behavior, for an inlet gas flow rate of 3 slm Ar in the geometry. The color map in Fig. 2 illustrates the velocity magnitudes in both gas and liquid phases, while the velocity directions are depicted with arrows. This inlet gas flow rate of 3 slm yields an average gas velocity of 26.1 m s\(^{-1}\) in the afterglow, as is clear from Fig. 2. This is in agreement with calculated values reported in the literature, for the same plasma jet diameter of 1.6 mm.\(^5\)\(^6\)\(^6\) The gas that exits the nozzle will reach the interface (height of 0 cm) and subsequently flow along the interface outwards, inducing shear stress on the liquid. Because of this, the upper liquid layer (thickness of 200 \(\mu\)m) will also start to flow in the same direction as the gas flow, with a maximum velocity of 10.4 m s\(^{-1}\). This liquid flow leads to the formation of a reverse vortex near the border of the liquid vessel. A close-up of this reverse vortex is presented at the right side in Fig. 2. Furthermore, when reaching the border of the liquid vessel (at radius = 3.5 cm), the velocity in the liquid is greatly reduced within the reverse vortex (to a maximum value of 0.54 m s\(^{-1}\)).

Due to the presence of this reverse vortex, the liquid (at a depth of 200 \(\mu\)m and lower) will start flowing back towards the center, in the opposite direction compared to the liquid flow at the interface. When reaching the center of the vessel, the flow is subsequently guided towards the bulk of the liquid (cf. Fig. 2). This results in an interesting flow pattern in the liquid which, at first sight, seems to contradict some experimentally observed flow patterns.\(^5\)\(^3\)\(^,\)\(^6\)\(^4\) However, the depth at which the liquid flows in the opposite direction from the flow at the interface greatly depends on the velocity of the gas that flows along the interface, and thus on the gas flow rate. At 3 slm, this opposite flow in the liquid phase occurs at a depth of ca. 200 \(\mu\)m, while it is roughly at 300 \(\mu\)m for 2 slm and 400 \(\mu\)m for 1 slm. This is illustrated in Fig. 3 for these three different flow rates. Note that the color codes of the gas flow and liquid flow are the same in this figure, to indicate that the liquid velocity at the interface is equal to that of the gas flow. The observations reported by Hefny, et al.\(^6\)\(^4\) are obtained at helium flow rates of 1.4 slm and a gap of 4 mm, resulting in significantly lower gas velocities at the liquid interface, and this affects the flow pattern inside the liquid, as is clear from Fig. 3.

To illustrate this in more detail, we calculated the liquid flow pattern for an inlet Ar flow rate of 0.1 slm, yielding an average gas velocity of 0.7 m s\(^{-1}\) in the afterglow, and the result is presented in Fig. S1 in the ESI.\(^\dagger\) For a 0.1 slm Ar flow rate, we observe an almost identical liquid flow pattern as presented in the experimental paper of Hefny, et al.\(^6\)\(^4\) Indeed, the reverse

![Fig. 2](image_url) 2D plot of the velocity magnitude (depicted in a rainbow color scale) in both gas and liquid phase, at an inlet gas flow rate of 3 slm. The direction of the flow is indicated by yellow and white arrows for the gas and liquid phase, respectively. The arrows are logarithmically scaled based on the velocity magnitude, for the sake of clarity. The symmetry axis is located at radius = 0 cm. Given the vast difference between the liquid velocity at the interface and bulk, the color scale is shifted to lower values for the sake of clarity. The values above the color scale indicate the highest velocity in both gas and liquid phases (in m s\(^{-1}\)). A zoom of the 2D plot in the white box indicated with letter ‘A’ is presented on the right side of the figure. It shows a close-up of the reverse vortex in the liquid, located at the interface, using the same color scale as in the main figure. The arrows indicating the direction of the flow are depicted in black in the right figure. The white box indicated with letter ‘B’ represents the close-up used in Fig. 3.
The temperature of the gas quickly decreases once it comes into contact with the liquid, reaching the liquid temperature. At the same time, the liquid temperature, which was initially 293 K, slightly decreases as a function of time, to an average of 291 K after 1 minute. Furthermore, the temperature of the liquid and gas at the interface is identical, reaching a minimum value of 289 K at the border of the liquid vessel and the reverse vortex (at radius = 3.5 cm in Fig. 4).

The drop in liquid temperature is a result of the evaporation of water due to convection and is consistent with the model predictions by Lindsay and Graves. When the water vapor above the interface is blown away by the plasma jet, liquid water evaporates in order to maintain the equilibrium in vapor pressure. This evaporation process consumes heat, leading to some cooling of the liquid, as observed in Fig. 4. The slight drop in liquid temperature might be at first sight counterintuitive, as the initial temperature of the gas is higher than that of the liquid, so we might expect a heating effect. To verify that the drop in liquid temperature by evaporation is more important than the eventual increase due to the higher gas temperature, we performed a calculation where the evaporation was disabled (see Fig. S2 in the ESI†).

It is clear from this figure that the liquid temperature now slightly increases (i.e., less than 1 K after 1 min), indicating that the cooling effect of evaporation of the liquid is indeed stronger than the heating effect by the warm gas effluent. Note that our calculations were performed using a liquid volume of 135 mL, with an interface of 38.5 cm². Thus, the area of evaporation (≈ 38.5 cm²) is more than 100 times larger than the area where the warm effluent reaches the liquid (≈ 0.28 cm²), and thus, cooling of the liquid can indeed be expected.

Species concentrations in the gas phase

Fig. 5 shows the species number densities in the afterglow as a function of distance from the nozzle of the plasma jet device. The interface is located at 17 mm (15 mm gap + 2 mm depression). At the top of the figure, we included a timescale axis, which is obtained from the distance in combination with the local gas velocity of the effluent. This time-information is useful when interpreting the gas chemistry. A clear increase in densities of the long-lived species, i.e., O₃, HNO₂, HNO₃, H₂O₂ and H₂, is observed, while the densities of the radicals, i.e., OH, O, N, H and HO₂, show a steady decrease, indicating that they are consumed for the formation of the more long-lived species. NO appears to be an exception, as its density remains relatively constant, and it reaches the gas–liquid interface with a density of around 5 × 10¹³ cm⁻³. The latter also explains the increase in NO₂ density, because the production of NO₂ mainly relies on the presence of NO in the effluent (through the reactions between NO and O, HO₂ or NO₃, see Table S2, ESI†). The trends in NO and NO₂ densities are in good agreement with the results of other plasma models, indicating that NO is more stable than the other short-lived species and plays an active role in the production of NO₂. Indeed, the reaction rates for NO (both production and loss) are typically lower than the reaction rates for OH, O, N and HO₂. Thus, more time is needed for NO to be consumed, leading to a relatively high density of NO in

Temperature profile in the gas and liquid phases

Using the steady-state velocity profiles presented above, we calculate the transport of heat and mass as a function of distance from the nozzle of the plasma jet device. The interface is located at 17 mm (15 mm gap + 2 mm depression). At the top of the figure, we included a timescale axis, which is obtained from the distance in combination with the local gas velocity of the effluent. This time-information is useful when interpreting the gas chemistry. A clear increase in densities of the long-lived species, i.e., O₃, HNO₂, HNO₃, H₂O₂ and H₂, is observed, while the densities of the radicals, i.e., OH, O, N, H and HO₂, show a steady decrease, indicating that they are consumed for the formation of the more long-lived species. NO appears to be an exception, as its density remains relatively constant, and it reaches the gas–liquid interface with a density of around 5 × 10¹³ cm⁻³. The latter also explains the increase in NO₂ density, because the production of NO₂ mainly relies on the presence of NO in the effluent (through the reactions between NO and O, HO₂ or NO₃, see Table S2, ESI†). The trends in NO and NO₂ densities are in good agreement with the results of other plasma models, indicating that NO is more stable than the other short-lived species and plays an active role in the production of NO₂. Indeed, the reaction rates for NO (both production and loss) are typically lower than the reaction rates for OH, O, N and HO₂. Thus, more time is needed for NO to be consumed, leading to a relatively high density of NO in...

Fig. 3 Close-up of the interface (in the white box indicated by letter ‘B’ in Fig. 2) at three different inlet gas flow rates, i.e., 1, 2 and 3 slm. The same color code is used for both the gas and liquid phases, to clearly indicate that the maximum liquid velocity is found in the top layers of the liquid, and is equal to the velocity of the gas at the interface. The arrows indicate the direction of the flow in the gas phase (black) and liquid phase (red). The gas–liquid interface (at a height of 0 cm) is indicated by a black line.

Fig. 4 2D plot of the temperature in both the gas and liquid phases after 1 minute of plasma treatment, presented in a rainbow scale.
the effluent (cf. Fig. 5). Although the comparison between 0D chemical kinetics models and fluid dynamics-kinetics models is difficult due to different assumptions and approximations, the observed trends in Fig. 5 are in good agreement with the density profiles as calculated by 0D simulations using similar input parameters. This validates the reduced chemistry and confirms that the most important gas phase chemistry is included in our model.

Some species presented in Fig. 5 (i.e., O₃, HO₂, OH and H) exhibit a non-smooth density profile. This is especially pronounced in the first 0.5 cm of the afterglow. There are two reasons for this behavior. First of all, it can be explained by the turbulent gas flow pattern found under the nozzle. Hence, the diffusion of ambient air components (i.e., O₂, N₂ and H₂O) becomes more turbulent, and the species for which the production heavily relies on the concentration of the ambient air components, will show a non-smooth density profile as a function of distance. For instance, the production of O₃ in the afterglow, close to the nozzle, is controlled by reaction 2 of Table S2 (ESI†), leading to an increase in O₃ density at the side of the nozzle where the density of O₂ is high. This is shown in Fig. 6. However, the gas flow turbulence at the side of the nozzle is more pronounced as well, explaining the non-smooth profile for the O₃ density. A similar explanation can be given for the HO₂ density, which is mostly produced by reaction 40 of Table S2 (ESI†) close to the nozzle.

\[
\begin{align*}
O + O₂ + M &\rightarrow O₃ + M \quad (2) \\
H + O₂ + M &\rightarrow HO₂ + M \quad (40)
\end{align*}
\]

In addition, the non-smooth density profile close to the nozzle can also be explained by the sharp boundary condition in our model, as chemical reactions only start when the species leave the nozzle. As the concentration of radicals, such as H and OH, is high at the nozzle (cf. Table S1 in the ESI†), these species start to react immediately, which can have a great impact on their densities in the first millimeters after the nozzle.

Transport of species in the liquid phase

At the gas–liquid interface (distance = 1.7 cm in Fig. 5), a sharp drop in the density of various species can be observed, i.e., more specifically, those with a high Henry’s constant, i.e., H₂O₂, OH, O, HO₂, HNO₂, HNO₃ and NO₃ (cf. Table S3, ESI†). On the other hand, the densities of species with a low Henry’s constant will remain constant above the gas–liquid interface. This behavior is shown in Fig. 7 for the 2D density profiles of H₂O₂ and O₃, which are characterized by a high and low Henry’s constant, respectively.
Once the gas species are in the liquid, they will be transported by both diffusion and convection. Due to the rather high velocity of the liquid at the interface (cf. Fig. 2), convection will contribute most to the transport of species in the liquid. This is also clear from Fig. 7, where the flow pattern in the liquid (cf. Fig. 2) is also clearly visible in the density profiles of the dissolved species. The importance of convection for the transport and accumulation of species in the bulk liquid was also demonstrated by Lindsay and Graves, who reported a steady increase in the concentration of reactive species in the liquid, when convection was turned on.

Following the liquid flow as depicted in Fig. 2, the dissolved species will initially remain at the gas–liquid interface and will accumulate in the observed reverse vortex. They will also flow back along the top layers of the liquid, following the liquid flow, after which they are introduced in the bulk liquid (as seen in Fig. 7 left).

Species concentrations in the liquid phase

The 1D spatial density profiles of the reactive species in the liquid are presented in Fig. 8, i.e., at a depth of 100 μm along the interface (Fig. 8A) and as a function of depth at the symmetry axis (Fig. 8B). Note that the plot in Fig. 8A only starts at \(r = 0.7 \) cm, due to the presence of the depression in the liquid.

The fast consumption of short-lived species, i.e., OH, NO2 and NO3, in the liquid is obvious from Fig. 8A. Indeed, their densities drop with multiple orders of magnitude within 1 mm.
along the interface, and they are completely consumed in the lower liquid layers to produce long-lived species (explaining why their densities are not plotted in Fig. 8B). This clearly demonstrates their importance in the liquid chemistry at the liquid depression (where the effluent interacts with the interface) and the first layers in the solution. On the other hand, the densities of the other species, i.e., H$_2$O$_2$, HNO$_2$/NO$_2^-$, NO$_3^-$, HO$_2$O$_2^-$, O$_3$ and ONOOH/ONOO$^-$, remain relatively constant as a function of distance, both in the horizontal and vertical direction. As the liquid needs roughly 0.2 seconds to reach 3.5 cm along the symmetry axis (cf. Fig. 8B), it can be concluded that the chemistry needs longer timescales to significantly affect the concentration of the long-lived species.

In Fig. 8B, the gas densities of the species that reach the bulk liquid are shown by an asterisk in the same color (taken at 1.65 cm below the nozzle, i.e., before the sudden depletion, as presented in Fig. 5). Note that only the densities of the long-lived species are presented in this figure. The action of Henry’s law is very clear, because species with a high Henry’s constant, i.e., H$_2$O$_2$, HNO$_3$ and HNO$_3^+$, are found at significantly higher densities in the liquid phase compared to their densities in the gas phase, while the opposite is true for O$_3$, which has a low Henry’s constant. Moreover, the accumulation of the dissolved species at the reverse vortex is visible from Fig. 8A, showing an increase in the densities for all the reactive species at a radial distance of 3.4–3.5 cm. As mentioned, this is caused by the sudden decrease in liquid velocity and the recirculation inside this vortex, leading to an accumulation of the species.

Note that NO clearly accumulates in the reverse vortex, with densities almost comparable with some long-lived species, while it is immediately consumed in the bulk liquid. Indeed, NO is not found in Fig. 8B. The same is true for NO$_3^-$, which also accumulates in the reverse vortex, reaching a maximum density of 7.5×10^8 cm$^{-3}$ at a radial position around 3.36 cm (not shown in Fig. 8, because of the too low density).

From Fig. 8B, it can be deduced that only H$_2$O$_2$, HNO$_2$/NO$_2^-$, NO$_3^-$, O$_3$, HO$_2$O$_2^-$ and ONOOH/ONOO$^-$ are able to enter the bulk liquid and accumulate in the solution. To obtain more insight into the accumulation of these species, we plot their number density, averaged over the entire liquid volume (135 mL) as a function of time in Fig. 9. It should be stressed that these accumulations are only calculated during plasma treatment and not after. After 1 minute of plasma treatment, H$_2$O$_2$ has the highest concentration (1.3×10^{15} cm$^{-3}$) in the solution, followed by NO$_3^-$ and NO$_2^-$ (6.3×10^{14} and 6.0×10^{14} cm$^{-3}$, respectively). The concentrations of these species increase monotonically as a function of time during plasma treatment, consistent with the results obtained from experimental studies.70,71

This increase, however, is not observed for the other species, which are found in much lower numbers. The concentration of O$_3^-$ increases sharply in the first 10 seconds, and subsequently it reaches a constant value of around 2.6×10^{12} cm$^{-3}$. As HO$_2$ and O$_3^-$ are connected through a pK_a value of 4.88, the same is true for HO$_2$, albeit at a significantly lower concentration. This is caused by the increasing importance of loss reactions 77 and 92 (see Table S2 in the ESI†), which eventually become equal to the accumulation of HO$_2$/O$_2^-$ (via solvation and production reactions), leading to a steady-state as observed in Fig. 9.

$$\text{HO}_2 + \text{H}_2\text{O} + \text{O}_2^- \rightarrow \text{O}_2 + \text{H}_2\text{O}_2 + \text{OH}^-$$

$$\text{HO}_2 + \text{HO}_2 \rightarrow \text{O}_2 + \text{H}_2\text{O}_2$$

The concentration of O$_3$ also increases steeply, reaching a maximum value of 8.1×10^{13} cm$^{-3}$ after 14 seconds, but it declines steadily afterwards. This is the result of an important loss reaction (reaction 70 in Table S2, ESI†), which is affected by the increasing concentration of NO$_2^-$, consistent with the work of Lukès et al.70

$$\text{NO}_2^- + \text{O}_3 \rightarrow \text{O}_2 + \text{NO}_3^-$$

A similar trend is also found for ONOOH/ONOO$^-$, but the reason is less trivial. Within the solution, the production of ONOOH/ONOO$^-$ is mainly controlled by reactions 83 and 84 of Table S2 (ESI†), and thus it depends on the concentration of short-lived species like OH, HO$_2$ and NO.

$$\text{NO} + \text{HO}_2 \rightarrow \text{HOONO}$$

$$\text{NO}_2 + \text{OH} \rightarrow 0.7(\text{NO}_3^- + \text{H}^+) + 0.3(\text{ONOOH})$$

Therefore, the production of ONOOH/ONOO$^-$ mainly takes place just beneath the gas–liquid interface, where these species still have a reasonable density. However, the concentrations of other long-lived species, such as H$_2$O$_2$ and NO$_3^-$, just beneath the interface will also increase, due to recirculation in the liquid (cf. Fig. 2). Because of this, the short-lived species, necessary to produce ONOOH/ONOO$^-$, will also be consumed by reactions with these long-lived species, thus decreasing the production rates of ONOOH/ONOO$^-$. Combined with the fact that ONOOH/ONOO$^-$ decomposes again in water into short-lived species, such as OH, NO, O$_2^-$ and NO$_2$ (reactions 89–91 in Table S2, ESI†), this explains the drop in the concentration of
ONOOH/ONO− as a function of time. In the bulk liquid, the production of ONOOH/ONO− is governed by the reaction between H_2O_2 and NO$_3^-$ (reaction 78 in Table S2, ESI†). However, this process is much slower compared to the reactions with short-lived species as observed in the interface, and will therefore only have a small contribution to the production of ONOOH/ONO− during plasma treatment.

Thus, from Fig. 9, we can expect that only H_2O_2, HNO$_2$/NO$_2^-$ and NO$_3^-$ will remain in the solution after treatment, while O_3, HO$_2$/O$_2^-$ and ONOOH/ONO− will be consumed, due to faster loss rates compared with production rates.

$$\text{H}_2\text{O}_2 + \text{NO}_2^- + H^+ \rightarrow \text{ONOOH} + \text{H}_2\text{O} \quad (78)$$
$$\text{ONOOH} \rightarrow \text{NO}_3^- + H^+ \quad (89)$$
$$\text{ONOOH} \rightarrow \text{OH} + \text{NO}_2 \quad (90)$$
$$\text{ONOO}^- \rightarrow \text{NO} + \text{O}_2^- \quad (91)$$

Overview of the liquid chemistry

Finally, we investigate the most important chemistry in the liquid phase, paying special attention to the differences between the bulk liquid and the initial layers just beneath the gas–liquid interface around the depression in the liquid (called here “liquid interface” for the sake of clarity). An overview is presented in Fig. 8. It starts from the gas phase species that (i) interact with the liquid interface (cf. Fig. 5), and (ii) play a role in the liquid chemistry (cf. Fig. 8 and Table S2, ESI†).

We focus especially on the species with the highest densities in Fig. 9, i.e., H_2O_2, HNO$_2$/NO$_2^-$, NO$_3^-$, O_3, HO$_2$/O$_2^-$ and ONOOH/ONO−. The species are written in boxes of which the thickness is a measure for the species relative density in that specific phase (bold being the highest density, such as O_3 in the gas phase, and dashed being the lowest, such as NO$_3$ in the gas phase). In this figure, reactions with ambient gas molecules (N_2, O_2 and H_2O) are included, but these species are not depicted for the sake of clarity.

As shown in Fig. 5, O_3 reaches the gas–liquid interface with the highest density of all RONS, followed by NO, H_2O_2, and HNO$_2$. This is indicated by the thickness of the boxes of these species in the gas phase in Fig. 10. Note that H_2 also reaches the gas–liquid interface with relatively high density (cf. Fig. 5), but as it is not involved in the reactions that provide a significant contribution to the liquid phase species, it is not included in Fig. 10. The same applies for $\text{O}_2(a)$, which is not included in the liquid phase chemistry, because of a lack of data (see discussion Computational setup). The transfer of species from one phase to the other is represented by vertical blue arrow lines in Fig. 10, and the thickness of the arrow line is a measure for the fraction of that species that reaches its destination. For instance, H_2O_2 and HNO$_2$ can easily enter the liquid due to their high Henry’s constant, so the blue arrow line is thick compared to that of O_3, which has a low Henry’s constant. Indeed, despite the high density of O_3 and NO above the liquid interface (cf. Fig. 5), only a small fraction is able to enter the liquid due to their low Henry’s constant, leading to liquid densities that do not exceed the order of 10^{13} cm$^{-3}$.
contrast to the density of, e.g., H$_2$O$_2$, which reaches 1.3×10^{15} cm$^{-3}$ (cf. Fig. 9).

In Fig. 10, chemical reactions are depicted by black arrow lines. In the liquid interface, the thickness indicates the relative importance of that reaction for the reaction products, while in the bulk liquid, a constant line thickness is used, as typically only one or two reactions contribute to the production of reactive species.

It is clear from Fig. 10 that the production of H$_2$O$_2$, HNO$_2$/NO$_2^-$ and NO$_3^-$ is driven by OH, NO and NO$_2$ in the liquid interface, besides of course solvation of the gas phase species (cf. the high Henry’s constants). The most important reactions are reactions 71, 81 and 85 of Table S2 (ESI†), consuming a large part of OH, NO and NO$_2$ for the production of H$_2$O$_2$, HNO$_2$ and even NO$_3^-$.

These three reactions together contribute up to 99% of the total production of H$_2$O$_2$, HNO$_2$/NO$_2^-$ and NO$_3^-$ at the depression (interface) in the liquid, besides solvation of the gas species.

\[
\text{OH} + \text{OH} \rightarrow \text{H}_2\text{O}_2 \\
\text{NO} + \text{OH} \rightarrow \text{H}_2\text{O}_2 \\
\text{NO}_2 + \text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}_2 + \text{NO}_3^- + \text{H}^+ \tag{85}
\]

In addition, OH is not only responsible for the production of H$_2$O$_2$ and HNO$_2$/NO$_2^-$, but it also leads to partial decomposition of H$_2$O$_2$ in the liquid interface, forming HO$_2$ (reaction 75 in Table S2, ESI†), as well as to partial decomposition of NO$_2^-$, forming NO$_2$ and OH$^-$ (reaction 76 in Table S2, ESI†).

\[
\text{OH} + \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O}_2 + \text{HO}_2 \tag{75}
\]

\[
\text{OH} + \text{NO}_2^- \rightarrow \text{OH}^- + \text{NO}_2 \tag{76}
\]

The increasing NO$_2$ concentration by reaction 76 in turn leads to an increase in the production of NO$_2^-$ and NO$_2^-$ through reaction 85. The above five reactions, i.e., 71, 75, 76, 81 and 85, constitute the most important processes found in the liquid interface, eventually generating H$_2$O$_2$, HNO$_2$/NO$_2^-$, NO$_3^-$ and HO$_2$/O$_2^-$. This picture changes significantly in the bulk liquid, where H$_2$O$_2$ is generated by the self-decomposition of HO$_2$/O$_2^-$ (reaction 77 in Table S2, ESI†), while NO$_3^-$ is mostly produced by the reaction between O$_3$ and HNO$_2$/NO$_2^-$ (reaction 70 in Table S2, ESI†). Unlike H$_2$O$_2$ and NO$_2^-$, the other species, i.e., HNO$_2$/NO$_2^-$, HO$_2$/O$_2^-$ and O$_3$ are generated in the bulk solely through diffusion and convection from the liquid interface, and are not formed via chemical reactions (due to the absence of the required short-lived species). However, HO$_2$/O$_2^-$, O$_3$ and HNO$_2$/NO$_2^-$ are involved in both reactions 77 and 70, which form the main loss processes for these species in the bulk liquid.

\[
\text{HO}_2 + \text{H}_2\text{O} + \text{O}_2^- \rightarrow \text{O}_2 + \text{H}_2\text{O}_2 + \text{OH}^- \tag{77}
\]

\[
\text{NO}_2^- + \text{O}_3 \rightarrow \text{O}_2 + \text{NO}_3^- \tag{70}
\]

O$_3$ in the liquid mostly originates from the reaction between O and O$_2$, as transfer from the gas phase is limited by a low Henry’s constant. In turn, O$_3$ is mainly involved in reaction 70 towards the formation of NO$_3^-$ (cf. Fig. 10), both in the liquid interface and in the bulk liquid, as already stated above. Although this reaction is the major loss process for O$_3$, it contributes very little to the total production of NO$_3^-$ in the liquid interface, where reaction 85 is much more important. Furthermore, despite being among the most pronounced reactions in the bulk liquid, the rate of reaction 70 is still very low, which explains the relatively slow changes in the density of O$_3$ in the bulk as a function of time (cf. Fig. 8).

Next to H$_2$O$_2$, NO$_2^-$, O$_3$ and NO$_3^-$, O$_2^-$ is also observed in the bulk, albeit at significantly lower concentrations (cf. Fig. 9). Like H$_2$O$_2$, the accumulation of O$_2^-$ in the liquid results from the combination of solvation (as HO$_2^-$ also has a high Henry’s constant) and the presence of OH in the liquid interface, which can react with H$_2$O$_2$ forming HO$_2^-$ via reaction 75 (see above). On the other hand, OH can also react with HO$_2$/O$_2^-$, forming O$_2$ via reactions 73 and 74 (Table S2, ESI†). Both reactions 73 and 74 are found to be the main loss processes for HO$_2$/O$_2^-$ in the liquid interface (not depicted in Fig. 10).

\[
\text{OH} + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \tag{73}
\]

\[
\text{OH} + \text{O}_2^- \rightarrow \text{OH}^- + \text{O}_2 \tag{74}
\]

Despite the presence of several production reactions for solvated O$_2^-$, its density in the liquid remains low (not exceeding 1013 cm$^{-3}$, cf. Fig. 9), due to the presence of NO in the liquid interface (cf. Fig. 8A) leading to the formation of ONOOH/ONOO$^-$ (reaction 83 in Table S2, ESI†). In the bulk, however, the self-decomposition of O$_2^-$/HO$_2$ becomes the most important loss process, forming H$_2$O$_2$ via reaction 77 (see above), and to a lesser extent by reaction 92 (due to the lower concentration of HO$_2$ in a solution with pH 7.3).

\[
\text{NO} + \text{HO}_2 \rightarrow \text{ONOOH} \tag{83}
\]

\[
\text{HO}_2 + \text{HO}_2 \rightarrow \text{O}_2 + \text{H}_2\text{O}_2 \tag{92}
\]

Finally, ONOOH/ONOO$^-$ is mainly formed in the liquid interface from OH and NO$_2^-$, via reaction 84. However, given the fast solvation of ONOOH from the gas phase to the liquid phase (cf. high Henry’s constant), we expect that ONOOH generated in the gas phase will also contribute to its liquid density, but due to a lack of sufficient data in the literature, the gas phase chemistry of ONOOH could not be included in this model. The liquid chemistry changes in the bulk, where reaction 78 forms the main production source for ONOOH/ONOO$^-$, albeit at a much slower rate. However, the latter will increase with increasing acidity.70

\[
\text{NO}_2 + \text{OH} \rightarrow 0.7(\text{NO}_3^- + \text{H}^+) + 0.3(\text{ONOOH}) \tag{84}
\]

\[
\text{H}_2\text{O}_2 + \text{NO}_2^- + \text{H}^+ \rightarrow \text{ONOOH} + \text{H}_2\text{O} \tag{78}
\]

On the other hand, ONOOH also decomposes into NO$_3^-$ (reaction 89). Because of this, combined with reactions 90 and 91, the concentration of ONOOH remains very low in the liquid (not exceeding 2 \times 1010 cm$^{-3}$) and is found to decrease as a function of time, as explained above (cf. Fig. 9).
consistent with experimental observations at neutral pH, where ONOOH/ONOO− is stated to be unstable in solution, forming among others NO3−.72,73

Thus, OH, NO and NO2 are formed in the bulk liquid, and quickly react with other species found in the solution to generate long-lived species like H2O2, HNO2/NO2−, and NO3−, and decompose O2 in the investigated solution. Moreover, the generation of these short-lived species (OH, NO and NO2) is expected to contribute to the oxidation of biomolecules found in the treated solution.70,74

\[
\begin{align*}
\text{ONOOH} & \rightarrow \text{NO}_3^- + \text{H}_2\text{O} \quad (89) \\
\text{ONOOH} & \rightarrow \text{OH} + \text{NO}_2 \quad (90) \\
\text{NOOO}^- & \rightarrow \text{NO} + \text{O}_2^- \quad (91)
\end{align*}
\]

In summary, our model predicts that the long-lived species (\(i.e., \text{H}_2\text{O}_2, \text{HNO}_2/\text{NO}_2^-, \text{ONOOH/ONOO}^-\), \(\text{O}_3\) and \(\text{NO}_3^-\)) are mainly generated in the liquid interface, through either solvation from the gas phase, as well as reactions governed by OH, NO and NO2 originating from the gas phase. Furthermore, these long-lived reactive species accumulate in the bulk liquid as a result of diffusion and convection from the liquid interface. Chemical reactions in the bulk liquid are found at significantly lower rates, and they favor the production of both \(\text{H}_2\text{O}_2\) and \(\text{NO}_3^-\). While \(\text{H}_2\text{O}_2\) is solely produced by the self-decomposition of \(\text{NO}_2/\text{O}_2^-\) in the bulk liquid (in addition to the transport from the liquid interface), our calculations reveal that the production of \(\text{NO}_3^-\) is favored in the presence of \(\text{HNO}_2/\text{NO}_2^-\) through the interplay between either \(\text{H}_2\text{O}_2\) and \(\text{HNO}_2/\text{NO}_2^-\) (with ONOOH/ONOO− as intermediate) or \(\text{O}_3\) and \(\text{HNO}_2/\text{NO}_2^-\).

The results presented in this work of course depend on the simulated working conditions, such as the treatment gap, flow rate and pH of the treated liquid. Decreasing the flow rate and/or increasing the gap leads to a significant increase in the time needed for the plasma species to come in contact with the liquid interface, which has an impact on the simulated chemistry. As a result, the short-lived gas species (\(i.e., \text{O, N, OH, H}_2\text{O}_2\) and \(\text{NO}_3\)) will have more time to be consumed towards the formation of the long-lived gas species (\(i.e., \text{H}_2\text{O}_2, \text{O}_3, \text{HNO}_2\) and \(\text{HNO}_3\)). This will lead to a decrease in the density of the short-lived gas species and an increase in the density of the long-lived gas species, at the liquid interface, with decreasing flow rate and/or increasing gap. This, in turn, will greatly influence the observed liquid chemistry at the liquid interface (\(cf. \text{Fig. 10}\)). Indeed, a lower density of short-lived liquid species at the interface will result in lower reaction rates for the formation of the long-lived liquid species. The decrease in formation of long-lived liquid species at the liquid interface will, however, be compensated by the higher density of long-lived gas species that come in contact with the liquid interface, as mentioned above. Simultaneously, a lower gas velocity also influences the number of species that is introduced in the system per unit of time. Combined, the number of reactive species inside the liquid will decrease with decreasing flow rate.

Furthermore, as the concentration of \(\text{H}^+\) and \(\text{OH}^-\) has a significant impact on the simulated chemistry, due to equilibrium of weak acids, pH dependent reactions and reactions with either \(\text{H}^+\) or \(\text{OH}^-\), the pH of the solution will play a crucial role in the results observed in this work. On one hand, as \(\text{H}_2\text{O}_2\) and \(\text{HNO}_2/\text{NO}_2^-\) are known to form ONOOH/ONOO− at decreasing pH values,70 we expect a slow decrease of these reactive species, eventually forming \(\text{NO}_3^-\) (through ONOOH/ONOO− as the intermediate)70 and decreasing the activity of the produced PTL as a function of time, as was indeed observed in the experiments.70 On the other hand, a decrease in the ozone density in solution with increasing pH can be expected. This is, first of all, caused by the increasing importance of the peroxone chemistry at high pH values (reaction 93 of Table S2, ESI†). Additionally, we expect that reactions with \(\text{OH}^-\) and \(\text{NO}_2\) will become more important with increasing pH (reactions 69 and 70 of Table S2, ESI†), leading to the further consumption of ozone in solution.

We plan to extend our model in the near future, to be able to investigate the effect of different working conditions (flow rate, gap, liquid volume and pH) on the liquid chemistry and on the accumulation of reactive species in more detail. In addition, we plan to evaluate the behavior after plasma treatment (\(i.e., \text{no inlet velocity and plasma species densities}\)), for the evolution of the species in the produced PTL at longer timescales, and to investigate the stability of the PTL after plasma treatment.

Conclusions

We have developed a 2D axisymmetric fluid dynamics model to investigate the plasma jet–liquid interactions for an Ar plasma jet, focusing in particular on the accumulation and chemical reactions of plasma generated reactive species in a buffered aqueous solution, as well as transport from the gas phase. 20 gas phase species and 22 liquid phase species are included, which react in 57 gas phase reactions and 42 liquid phase reactions. Furthermore, transport of the plasma species from the gas phase to the liquid, governed by Henry’s law, as well as water evaporation, is taken into account. Our results indicate that the flow pattern in the liquid depends on the velocity of the effluent, which is determined by the gap and the gas flow rate. Due to the high gas phase velocity, we observed the generation of a reverse vortex in the liquid, which relocates towards the gas–liquid interface with increasing velocity. This results in a complex flow pattern at the liquid interface, which affects the chemistry in the liquid. Indeed, due to the liquid flow pattern, short-lived reactive species will remain close to the interface and cannot reach the bulk liquid. The observed liquid flow pattern also leads to the accumulation of long-lived reactive species, \(i.e., \text{H}_2\text{O}_2, \text{HNO}_2/\text{NO}_2^-, \text{NO}_3^-, \text{O}_3, \text{H}_2\text{O}_2/\text{O}_2^-\) and ONOOH/ONOO−, as well as \(\text{NO}\) and \(\text{NO}_3\), in the reverse vortex situated at the border of the liquid vessel.

As the short-lived reactive species are consumed at the interface, generating long-lived reactive species, they are not encountered in the bulk liquid. Indeed, our results show that
only H₂O₂, HNO₂/NO₂⁻, NO₃⁻, O₃, HO₂/O₂⁻ and ONOOH/ONOO⁻ are present in the bulk liquid during plasma treatment. Furthermore, from these results we can expect that only H₂O₂, HNO₂/NO₂⁻ and NO₂⁻ will remain in the liquid after plasma treatment, consistent with experimental observations."70,71 The other species found in the bulk liquid, i.e., O₃, HO₂/O₂⁻ and ONOOH/ONOO⁻, are consumed in the liquid chemistry. Indeed, O₃ is consumed by the reaction with HNO₂/NO₂⁻, while HO₂/O₂⁻ and ONOOH/ONOO⁻ decompose to form either H₂O₂ or both HNO₂/NO₂⁻ and NO₃⁻, respectively.

In this work, we have presented the model for a specific set of treatment conditions, so it should be kept in mind that the presented results are only valid for these conditions. As the calculated chemistry and the presented results depend on the treatment conditions, we plan to extend the presented model in the future, to be able to assess the impact of various working conditions (flow rate, gap, volume and pH) on the simulated accumulation of reactive species, in order to support and explain experimental data.

Finally, it should be noted that the simulations presented here were performed only while the plasma jet was turned on. This means that a continuous flow of new species was introduced during the simulations. Because of this, our simulations can provide no conclusion yet on the stability of the simulated PTLs after plasma treatment. However, we are currently investigating the latter, as indeed, switching off the plasma will have an impact on the liquid flow, and therefore on the further accumulation of species. Hence, in the near future we plan to evaluate the PTL behavior after plasma treatment (i.e., no inlet velocity and plasma species densities), to investigate the evolution of the species in the produced PTL, and more in general, the stability of the PTL after plasma treatment.

We believe that our study provides valuable insight into the interaction of a plasma jet with liquid water, for the generation of plasma treated liquids, as well as more generally for plasma medicine.

Computational setup

General processes described in the model

We developed a two-dimensional axisymmetric fluid dynamics model in COMSOL Multiphysics™ version 5.0. Our model combines three physical modules: (i) transport of momentum, governed by the incompressible and time-independent Navier-Stokes equations, (ii) transport of heat, controlled by the principle of conservation of energy, and (iii) transport of mass, which is affected by diffusion and convection.

These three modules are calculated separately for both the gas and liquid phase. However, they are coupled to each other through the gas–liquid interface. Although no inlet or initial velocity is defined in the liquid, the liquid flow is coupled with the gas flow through a drag force implemented at the gas-liquid interface. This results in a shear stress in the liquid from the gas flowing over the interface. In addition, transport of heat is considered to be continuous over the interface and governed by the properties of the respective phase (i.e., air and water). Transport of species over the interface is controlled by Henry’s law. Finally, the evaporation of water is implemented at the interface, as well as the heat of evaporation. More details about the governing equations in the model can be found in the ESI.†

We describe four major processes: (i) transport of species in the gas and liquid phase, by both diffusion and convection, (ii) gas and liquid phase chemistry, (iii) transport of species over the gas–liquid interface and (iv) transport of heat, affecting both the chemistry and the transport of species. Combining all these processes in a fully coupled simulation, able to describe time-scales up to minutes as used in experimental treatments, results in a computationally highly demanding model. For this reason, we do not simulate the active discharge of the plasma itself, and we only consider the afterglow of the plasma. Indeed, when simulating a discharge, very fast processes have to be taken into account (like electron impact reactions), which hinders the calculations of the model for the envisioned time-scales (i.e., minutes). However, in order to obtain reliable results, we use results from 0D plasma chemical kinetics models56,60 which describe the plasma discharge for a plasma jet in great detail, as an input for our model. This is explained in the ESI† (see Table S1).

The absence of a plasma discharge or an electric field in the effluent might affect the flux of reactive species in the plasma effluent. However, we expect that this influence will have no significant impact on the results for three reasons. Firstly, the discharge could in principle result in heating of the gas, influencing the momentum of the gas molecules. This could be coupled back to the inlet flow. Although we only simulate the effluent, we take into account the increase in temperature as a result of the plasma discharge, for the calculations of both the gas flow and the gas chemistry (see below). However, this effect turns out to be minor. Secondly, the plasma species are influenced by the discharge and electric fields, but the majority of the flow consists of neutral gas species, which will not be affected by the plasma. Finally, the electric field could have an impact on the momentum of certain plasma species, which could enhance the flux of species in the effluent. However, this only holds true for devices with a significant electric field in the effluent.

Simulated system

The geometry used in this investigation is illustrated in Fig. 11, and represents a plasma jet powered by a pin electrode, such as the kINPen. The physical and chemical properties of this plasma jet, as well as its biological impact, have been widely studied, and it has also been used already for clinical treatment57,62 as mentioned above. This plasma source consists of two electrodes, i.e., a central pin electrode with a diameter of 1 mm surrounded by a grounded electrode with an inner diameter of 1.6 mm. The dimensions of the simulated liquid vessel are 7 cm × 3.5 cm, leading to a volume of around 135 mL. We assume that the liquid vessel is not filled to the very top during experimental treatment. As such, a wall with a height of 0.5 cm is introduced at the end of the liquid interface,
mimicking the top border of the liquid container. During the simulations, treatment in open air is assumed, which is implemented using open boundaries in the gas phase.

A treatment gap of 15 mm was chosen, because experimental results with the kINPen IND showed an active discharge at the liquid surface for smaller treatment gaps, which significantly affects the liquid chemistry. As the plasma discharge itself is not simulated here, a larger treatment gap (i.e., 15 mm) is used.

The general parameters of the geometry are listed in Table 1. We consider a 2D axisymmetric model, and the symmetry axis is situated at the center of the plasma jet. As such, the full geometry can be obtained by rotating the 2D image of Fig. 11 around the red line at $r = 0$. Because of the high velocity of the plasma jet (i.e., maximum velocity of 72.8 m s$^{-1}$ at a gas flow rate of 3 slm; see Results and discussion), a depression in the surface is often observed experimentally. The depth and width of this depression are highly dependent on the treatment conditions and the plasma jet used. Due to lack of detailed information, we set the depression in our model to 2 mm deep and 9 mm wide (cf. Fig. 11).

We consider a buffered solution at pH = 7.3. To achieve this, the concentration of H$^+$ and OH$^-$ are kept fixed and are determined by the applied pH value. We assure that charge neutrality of the liquid is preserved, in spite of the fact that more negative ions are present, due to the pH used and the liquid chemistry (see below). Indeed, we assume that positive counter ions, which are responsible for the preservation of charge balance (e.g., K$^+$ or Na$^+$), do not take part in chemical reactions with the reactive species. Therefore, they are not included in the liquid chemistry in this model.

Fluid flow

We use the time-independent Navier–Stokes equations in our model. These equations are solved until a steady-state is reached, after which the steady-state velocity profile is used as the input for the time-dependent calculations of the convection–diffusion equations for heat and mass transport (see below). This approach is justified as the feed gas of the plasma device is typically already flowing prior to the discharge. In this model, a flow rate of 3 slm (standard liters per minute) is used. As the hydraulic diameter of the nozzle is 1.6 mm, this yields a gas flow velocity of 72.8 m s$^{-1}$, and thus a Reynolds number of ca. 3500 is obtained, resulting in a turbulent gas flow. Therefore, the flow in the gas phase is calculated using the Reynolds-averaged Navier–Stokes equations (RANS) for an incompressible flow in air at 1 atm. For this purpose, the k-epsilon turbulence model, as built in COMSOL Multiphysics, is utilized. This is a widely used and well-established model for the description of a turbulent fluid flow. More details can be found in ref. 65. On the other hand, the maximum velocity of the liquid is typically much lower than that of the gas, i.e., 10.4 m s$^{-1}$ in our model. Therefore, a laminar behavior is expected and introduced in the water phase.

Transport of heat

The initial temperature of both the gas and liquid phase is set to 293 K. However, as a plasma jet is typically characterized by a higher gas temperature, the temperature of the inflowing gas and the walls inside the plasma jet device is set to 327 K, corresponding to the gas temperature reported in ref. 56 and 66. Indeed, as the active discharge is not simulated, the temperature corresponding to this discharge is implemented with the inflowing gas. To assure that the gas at the nozzle has a temperature of 327 K, the walls inside the plasma device are kept at this temperature as well. All the other walls in the model are considered to be isolating, except for the gas–liquid interface, where a continuous heat flow from the gas to the liquid is assured.

Chemistry and transport of species

We assume treatment in ambient air (78.09% N$_2$, 20.95% O$_2$ and 0.96% H$_2$O) with a pressure of 1 atm. The gas phase and

<table>
<thead>
<tr>
<th>Table 1 Dimensions and working conditions used in the model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner diameter of plasma jet</td>
</tr>
<tr>
<td>Diameter of pin electrode</td>
</tr>
<tr>
<td>Dimensions of water vessel</td>
</tr>
<tr>
<td>Volume liquid</td>
</tr>
<tr>
<td>Flow rate at inlet of plasma jet device</td>
</tr>
<tr>
<td>Gap between nozzle of plasma jet device and liquid surface</td>
</tr>
</tbody>
</table>
liquid phase species considered in our model are listed in Table 2. They are known to be either biologically active or act as precursors for biologically relevant reactive oxygen and nitrogen species (RONS). Furthermore, they are based on the results obtained from the 0D model of Van Gaens and Bogaerts.56,60 In that model, 85 different gas phase species and 1928 different chemical reactions were included, which is not possible in this 2D fluid model, certainly when describing plasma treatment times of several minutes. Therefore, we include here only the most important RONS and corresponding reactions, as reported in ref. 60. This results in 20 gas phase species and 22 liquid phase species (see Table 2). Both sets of species include molecules (long-lived species) as well as radicals and excited species (short-lived species). One of the long-lived species in the gas phase is Ar, because the plasma jet operates with Ar, which flows in humid air, forming various RONS, as well as H-containing species. As ions do not play a significant role in the chemistry of the plasma effluent, as calculated by the 0D simulations, they are not considered in the gas phase in our model (cf. Table 2). Furthermore, O$_2$(a) (1$^\Delta_g$) is included as excited species in the gas phase, as it contributes significantly to the production of biologically relevant species in the effluent.60,61 However, given the limited knowledge on the liquid chemistry, it could not be included in the liquid phase.

As the liquid phase is kept at a pH of 7.3, we assume that HNO$_3$, as a strong acid, is deprotonated as soon as it enters the liquid; hence it only occurs in our liquid model in its deprotonated form, NO$_3^-$. For the weak acids (i.e., HNO$_2$, HO$_2$ and ONOOH), equilibrium processes are introduced based on their p_K_a values (being 3.4, 4.88 and 6.8, respectively), so that the balance between the protonated and deprotonated form is maintained in the liquid, as governed by the pH.

Besides the 20 gas phase species and 22 liquid phase species, a set of 57 gas phase and 42 liquid phase reactions is considered. The set of reactions in the gas phase is a combination of the most important reactions reported by Van Gaens and Bogaerts and by Schmidt-Bleker et al.56,60 for an Ar plasma jet flowing in humid air. However, these models were only for the gas phase (active discharge plasma and afterglow). Given the limited data available in the literature on liquid reactions and reaction rate coefficients for this system, only a small liquid phase reaction set can be used. We adopted the reaction set as used by,67 but we extended it using the NIST database for kinetics in solution.68 A full list of the reactions included in the model for both the gas and liquid phase, along with their reaction rate coefficients, can be found in the ESL.† (Table S2).

Besides the chemical reactions between the species, the concentration profiles of the various species are also determined by diffusion and convection. Convection is governed by the gas or liquid velocity profile, as calculated by the Navier-Stokes equations (cf. section Fluid flow above), while diffusion is dependent on the diffusion coefficients of the species in both the gas and liquid phases. These values are listed in Table S3 in the ESL.† Likewise, the transport of the reactive species between the gas and liquid phase is controlled by Henry's law, stating that the densities of the gas and liquid species are in equilibrium at the interface. This equilibrium is based on Henry's constants for each individual reactive species, which are summarized in Table S3 in the ESL.†

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors thank Petr Lukès (Institute of Plasma Physics AS CR, Czech Republic) and Yury Gorbanev (UAntwerp, group PLASMANT) for the fruitful discussions regarding the chemistry in the model and the plasma–liquid interactions.

References

26 A. Görlich, Reactive Oxygen Species (ROS) and the Cellular Redox State - from Toxicity to Signaling, *Antioxid. Redox Signaling*, 2005, 7, 1398–1404.
et al.

61 K. Wende, et al., Identification of the Biologically Active Liquid Chemistry Induced by a Nonthermal Atmospheric Pressure Plasma Jet, Biointerphases, 2015, 10, 29518.

