Removal of alachlor in water by non-thermal plasma: Reactive species and pathways in batch and continuous process

Niels Wardeniera,b,*, Yury Gorbanevc, Ineke Van Moerb, Anton Nikiforova, Stijn W.H. Van Hulleb, Pieter Surmontd, Frederic Lynend, Christophe Leysa, Annemie Bogaertsc, Patrick Vanraesc

a Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000, Ghent, Belgium
b Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graf Karel de Coedelaan 5, 8500, Kortrijk, Belgium
c PLASMANT, Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
d Separation Science Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4-bis, 9000, Gent, Belgium

\textbf{Article Info}

\textbf{Article history:}
Received 23 February 2019
Received in revised form 6 June 2019
Accepted 10 June 2019
Available online 10 June 2019

\textbf{Keywords:}
Non-thermal plasma
Pesticides
Alachlor
Oxidative species
By-products

\textbf{Abstract}

Pesticides are emerging contaminants frequently detected in the aquatic environment. In this work, a novel approach combining activated carbon adsorption, oxygen plasma treatment and ozonation was studied for the removal of the persistent chlorinated pesticide alachlor. A comparison was made between the removal efficiency and energy consumption for two different reactor operation modes: batch-recirculation and single-pass mode. The kinetics study revealed that the insufficient removal of alachlor by adsorption was significantly improved in terms of degradation efficiency and energy consumption when combined with the plasma treatment. The best efficiency (ca. 80\% removal with an energy cost of 19.4 kWh m\(^{-3}\)) was found for the single-pass operational mode of the reactor. In the batch-recirculating process, a complete elimination of alachlor by plasma treatment was observed after 30 min of treatment. Analysis of the reactive species induced by plasma in aqueous solutions showed that the decomposition of alachlor mainly occurred through a radical oxidation mechanism, with a minor contribution of long-living oxidants (O\(_3\), H\(_2\)O\(_2\)). Investigation of the alachlor oxidation pathways revealed six different oxidation mechanisms, including the loss of aromaticity which was never before reported for plasma-assisted degradation of aromatic pesticides. It was revealed that the removal rate and energy cost could be further improved with more than 50\% by additional O\(_3\) gas bubbling in the solution reservoir.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The strong global population growth, combined with raising living standards in the last century, has forced industries to the large scale production of pharmaceuticals, organic pesticides, plasticizers, and other synthetic materials. Since 1970, these anthropogenic substances have been increasingly detected in the aquatic environment (Eggen et al., 2014). Among the different types of organic contaminants encountered in the environment, pesticides occupy a unique position, since they are mostly deliberately distributed.

Pesticides are chemical compounds that have been mainly designed to protect crops against fungal or animal pests. Indeed, their presence in the environment has been primary traced back to agricultural applications. They are divided in several groups such as carbamates, pyrethroids, neonicotinoids, organochlorine, organophosphate and biocides (Marican & Durán-Lara, 2018). For their transfer to water bodies, several potential pathways need to be considered (Köck-Schulmeyer et al., 2013). Monitoring data have shown that pesticides are usually released into the environment by diffusive sources. One of them includes the release into the surface water, through surface runoff from agricultural fields after rainfall events. Next to that, part of the pesticide load can be mobilized through the soil, eventually ending up in the ground water. Secondary effluent originating from municipal and industrial waste-water treatment plants is considered to be the major point source
of pesticides, entering into the surface water (Luo et al., 2014).

Given the high toxicity of most pesticides, along with their persistency towards conventional biological water treatment, activated carbon adsorption and chemical oxidation are currently considered as key technologies for the remediation of pesticide containing wastewaters (Ikehata & El-din, 2005; Luo et al., 2014). Although ozonation has proved to be effective in the removal of many organic pollutants, it was shown that the vast majority of the pesticides cannot be fully removed with ozonation alone (Ikehata & El-din, 2005). It should be stressed that in deionized water, the highly selective nature of O₃, only allows for a fast reaction with a limited set of organic compounds. Many important classes of crop protection chemicals such as the organochlorine pesticides, contain multiple hetero-atoms (e.g. N,P,Cl) in their molecular structure, and are thus stabilized against direct O₃ attack. In the case of organochlorine pesticides, the values for the second-order rate constants with O₃ are usually below 20 M⁻¹ s⁻¹ (Von Gunten, 2003; Wols and Hofman-Caris, 2012). Furthermore, the combination of multiple oxidants generally leads to a faster decomposition of target pollutants as compared to ozonation (Oturan and Aaron, 2014). A promising alternative for the abatement of recalcitrant pesticides involves the application of non-thermal plasmas: electrical discharges sustained at atmospheric pressure and near-ambient temperature. Plasmas created in liquids or gas-liquid environments produce various oxidising reactive species (HO₂, H₂O₂, O₃, H₂O₂) which contribute to the removal of organic compounds from water (Bradu et al., 2017; Jiang et al., 2014; Tarabová et al., 2018). In plasma reactors where the discharge is initiated in the gas phase, such as the dielectric barrier discharge (DBD) reactor, mass transfer is limited by the contact time of the solution under treatment in the plasma zone. Therefore, the removal efficiency (and implicitly its energy consumption) is kinetically-controlled by the diffusion rate of plasma-generated oxidants in the liquid film (Magureanu et al., 2016). Better removal efficiencies and higher energy yields are usually achieved in reactor systems that combine plasma treatment with catalysts, such as activated carbon (Qu et al., 2009). In particular, the improved performance of these so-called plasma catalytic reactors is attributed to (i) the increased residence time of the target compound and dissolved chemical components (i.e. H₂O₂ and O₃) on the catalyst surface, compared to the bulk liquid phase, due to adsorption and ii) the generation of reactive oxygen species (ROS), which facilitates pollutant oxidation.

Previously, we have reported the use of plasma-assisted removal of alachlor in a DBD reactor combining plasma treatment with activated carbon adsorption (Vanraes et al., 2018). In the present work, the removal and energy efficiency of (i) adsorption, (ii) adsorption coupled with plasma treatment and (iii) adsorption with plasma treatment and additional ozonation with plasma gas produced in the discharge are compared. Alachlor (ALA), a chlorinated herbicide belonging to the chloroacetanilide family, was chosen as the target pesticide. Although banned within the European Union, it is still largely detected in some parts of the world (Badriya et al., 2003). In addition, ALA is well-studied in terms of removal by different advanced oxidation processes, making it a fitting model compound.

Because the remediation of pesticide-containing wastewaters can either be carried out in reactors operated in a batch or single-pass (flow-through) configuration, the performance of both reactor modes was compared in this study, in terms of removal efficiency and energy costs. The production of various chemical oxidants (plasma-induced reactive species) was studied to obtain a better understanding of the underpinning mechanisms that contribute to ALA elimination. Finally, oxidation by-products formed during the oxidation of the pesticide were identified, and the degradation pathways were suggested.

2. Materials & methods

2.1. Chemicals

Dry oxygen (>99.5%) used as the feed gas in the plasma experiments was supplied by Air Liquide® (Belgium). Alachlor (ALA, 98%), 4-oxo-2,2,6,6-tetramethyl-1-piperidine (4-oxo-TEMP, 98%), sulphuric (H₂SO₄, 96%) and Titanium(IV)oxysulfate (TiOSO₄, 98%) were obtained from Sigma Aldrich® (Belgium). Sodium azide (NaN₃, 99%), hydrogen peroxide (H₂O₂, 30 v/v %), and dichloromethane (CH₂Cl₂, 99%) were purchased from Carl Roth® (Belgium). All chemicals and solvents used were as received.

2.2. Solution preparation

A saturated ALA solution was prepared by dissolving 50 mg of ALA powder in 100 mL of deionized water. The solution was stirred for 3 h, filtered and finally diluted with deionized water to obtain a working solution with 1 mg L⁻¹ ALA solution, which was used in the experiments. It should be noted that the ALA concentration of 1 mg L⁻¹ used in this work is higher than expected for real contaminated water conditions. Higher initial pollutant concentration usually results in the competition of the target compound with the by-products and the wastewater constituents (i.e. dissolved organic compounds) for the reaction with the oxidative species, as explained in Wardenier et al. (2019). Therefore, for real wastewater treatment the application efficiency of the process studied here may be higher than the energy costs reported in section 3.

2.3. Experimental setup

Both the batch-recirculation and single-pass experiments were carried out in the plasma-ozonation reactor (Fig. 1). The detailed setup description is found elsewhere (Vanraes et al., 2018; Wardenier et al., 2019). The reactor system consisted of a solution reservoir, connected in series with a dielectric barrier discharge (DBD) plasma reactor with cylindrical geometry. The plasma reactor consisted of a stainless steel tube, covered by one layer of Zorflex® activated carbon textile with 0.5 mm thickness, and was mounted in the centre of a quartz glass vessel. A copper mesh wrapped around the quartz vessel served as high voltage (HV) electrode. Dry oxygen was supplied at the bottom of the plasma chamber, which served as plasma feed gas. In all experiments, the gas flow rate was fixed at 1 standard liter per minute (slm) using a Bronckhorst® mass flow controller, giving a gas residence time of 1.98 s in the discharge zone. The length of the discharge region was 150 mm with a discharge gap of 2.25 mm and discharge volume of 33.1 cm³.

The high voltage electrode was connected to an alternating-current (AC) power supply, generating sinusoidal voltage at a frequency of 50 kHz and a peak-to-peak voltage of 8000 V. In order to improve the discharge stability, the power supply was triggered by a pulse generator (Thurby instruments®), which modulated the sinusoidal voltage waveform with a square wave function. The modulated waveform was characterized by a plasma ‘on’ time of 4.5 ms and a period (Toff + Ton) of 25.5 ms, corresponding to a duty cycle of: DC = Ton/(Ton + Toff) = 0.15.

The applied voltage was measured using a Tektronix® P6015 high voltage probe, while the total current was recorded by an IonPhysics® current probe. Voltage and current waveforms were sampled by a Tektronix® TD 1002 digital oscilloscope. The total input power (P) dissipated into the plasma could then be determined by multiplying the duty cycle with the power, generated during one period of voltage (Pₒ), as shown in eq. (1).
P = P₀, DC \quad (1)

2.4. Reactor configurations

Experiments were conducted in the batch configuration to study the effect of (i) adsorption, (ii) adsorption combined with plasma treatment and (iii) plasma-ozonation on the removal of ALA. Prior to treatment, the solution reservoir was filled with 500 mL of a 1 mg L⁻¹ ALA solution. The solution was continuously recirculated between the plasma chamber and the solution reservoir at a flow rate of 56.3 mL min⁻¹, corresponding to a residence time of 8.9 min and 2.09 s in the solution reservoir and the plasma chamber, respectively (Kovacevic et al., 2017). Details about the calculation method are given in Text S1 in the Supplementary Material. Aliquots of 20 mL were sampled from the reservoir at different time points (0, 2.5, 5, 10, 15, 20, 25, 30 min) and subjected to various analyses (see section 2.5 and Text S2 in the Supplementary Material). Taking samples during the batch experiments reduces the total solution volume under treatment. The error induced this way on the calculated reaction rate and EEO was determined to be less than 5%.

The plasma gas produced at the exhaust of the plasma chamber was either vented, or bubbled through the solution reservoir via a porous ceramic ozone dispenser during plasma-ozonation experiments. The removal of ALA by adsorption on the activated carbon textile was studied by recirculating the solution between both reactor chambers with the plasma switched off.

Single-pass experiments were conducted in the same experimental set-up and under similar operational settings as used for the batch-recirculating experiments. To allow the solution under treatment to pass through the plasma reactor only once, the reservoir was disconnected from the set-up, and the solution was continuously fed from the influent reservoir into the plasma chamber. ALA removal by adsorption on Zorflex® was measured after 10 s of operation. Subsequently, the plasma was switched on and samples were taken from the reactor outlet at identical time steps as in the batch experiments.

To evaluate the performance of the reactor system, the removal efficiency and energy consumption of each distinct process was determined. The removal efficiency (R) is defined as the ratio between the amount of ALA degraded in the reactor and the initial pollutant concentration (eq. (2)).

\[
R = \frac{c_0 - c_t}{c_0} \times 100 \quad (2)
\]

c₀ is the initial ALA concentration, and cₜ the concentration detected in solution after a given treatment time. Energy consumption (calculated for 90% removal) is determined by the electrical energy per order (EE/O) figure-of-merit, and is defined by eqs. (3) and (4) for the batch-recirculating and the single-pass configuration, respectively (Bolton and Tumas, 1996).

\[
\text{EE/O}_{\text{batch}} = \frac{P \times t \times 1000}{V \times 60 \times \log\left(\frac{c_0}{c_t}\right)} \quad (3)
\]

\[
\text{EE/O}_{\text{single-pass}} = \frac{P}{F \times \log\left(\frac{c_0}{c_t}\right)} \quad (4)
\]

where t represents the treatment time and V is the solution volume.

2.5. Analytical techniques

The residual concentration of ALA in the treated samples was determined by gas chromatography-mass spectrometry (GC-MS). The methodology employed here is described in detail in our previous work (Wardenier et al., 2019; see also Fig. S1). Oxidation by-product analysis was performed by high-performance liquid chromatography coupled with a diode array UV detector and time-of-flight mass spectrometry (HPLC-TOF-MS; see Supplementary...
Material for a complete description of the analytical procedures).

Gaseous O₃ in the exhaust gas stream, generated at the outlet of the plasma reactor and the solution reservoir was continuously monitored by a specially developed on-line ozone monitor (Text S2, section 2.1 in Supplementary Material).

In the liquid phase, EPR measurements were carried out in order to detect the presence of O, ¹O₂ and O₃ (Gorbanev et al., 2016a,b; Gorbanev et al., 2018). For the quantification of hydrogen peroxide (H₂O₂), the titaniumoxysulphate method was used (Tarabóvá et al., 2018). Further details are provided in Text S2 (section 2.2) and Fig. S2 in the Supplementary Material.

3. Results

3.1. Alachlor removal kinetics

- Table 1 summarizes the ALA removal efficiency and energy consumption observed after adsorption, and adsorption combined with plasma treatment in the single-pass configuration. The percentage of removal and EE/Oᵢsingle-pass Values, found at different time intervals after plasma ignition, along with a typical concentration profile is shown in Table S1 and Fig. S3 in the Supplementary Material. In the single-pass experiment 39% removal was observed by adsorption alone as shown in Table 1 and Fig. S3. Although adsorption aided in the removal of ALA, it must be noted that the target compound decomposition did not occur: ALA was only transferred from the solution to the activated carbon surface. At longer exposure times, continuous adsorption of ALA on the activated carbon membrane would result in a decreased adsorption capacity, ultimately requiring a replacement of the carbon textile. Effective decomposition of ALA can only occur when activated carbon adsorption is combined with an advanced oxidation process, such as plasma treatment. Once the plasma was initiated, the ALA removal efficiency was increased reaching ca. 80% under steady-state conditions, corresponding to an energy cost of (19.4 ± 1.5) kWh m⁻³, for an initial ALA concentration of 1 mg L⁻¹.

The increase in removal efficiency during the first 10 min of operation illustrates that the residence time of the ALA molecules in the discharge zone is much higher (i.e. several minutes) than the hydraulic residence time (HRT) of the solution, calculated from the assumption of a smooth laminar flow (2.09 s) (Kovacevic et al., 2017). According to the literature, steady-state concentrations are usually achieved within 3–5 times the hydraulic residence time (HRT) (Gerrity et al., 2010; Ajo et al., 2016). Following this line of thought, the ALA residence time in the plasma reactor is estimated to be in the range 2–3 min. Probably, the difference in residence time between the solution and the ALA molecules in the discharge zone is due to the continuous process of adsorption and desorption of ALA on the carbon surface when passing through the reactor. This in turn enhances the probability of interactions between the plasma-generated oxidants and the alachlor molecules adsorbed on the activated carbon textile.

The removal of ALA by adsorption, plasma-treatment, and plasma-ozonation during treatment in the batch-recirculating configuration is shown in Fig. 2. Similarly to the single-pass configuration, lowest removal efficiency was found for ALA adsorption on Zorflex™, accounting for 88.2% removal after 30 min of treatment. A faster elimination of ALA was found during plasma treatment and plasma — ozonation, where complete elimination was observed after 30 and 15 min of operation, respectively. When present in low concentrations (<100 mg L⁻¹) the elimination of organic compounds from water, with advanced oxidation processes (AOPs) or plasma treatment obeys a pseudo-first-order kinetics (Bolton and Tumas, 1996). Hence, the rate law describing pollutant decomposition reads as (eq. (5)):

\[
\frac{dc}{dt} = - k \cdot C
\]

With C the pollutant concentration (mol/l), t treatment time (s) and k the pseudo-first order rate constant (s⁻¹). The solution of eq. (5) \(C = C₀ \cdot e^{-k \cdot t} \) suggests an exponential decay in alachlor concentration as a function of treatment time, which is consistent with the shape of the alachlor decomposition profile shown in Fig. 2. The pseudo-first order rate constant was obtained by fitting experimental data shown in Fig. 2 to eq. (5) by means of nonlinear least squares regression, following the Levenberg-Marquardt algorithm.

To check the assumption of alachlor decomposition described by a pseudo first-order kinetics, Table S2 in the Supplementary Material compares the computed rate constants and correlation coefficients (R²) obtained from the fitting of the data with a zeroth order, pseudo-first order and second order kinetic model. A satisfactory agreement was found between the experimental data and the model predictions obtained from the pseudo-first order kinetic model (R² > 0.998 for the three fittings), whereas the R² values were smaller for the zeroth second order kinetic models (R² < 0.94). This justifies the use of a pseudo-first order kinetic model for the accurate prediction of the alachlor decomposition.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Treatment condition</th>
<th>R (%)</th>
<th>EE/Oᵢsingle-pass (kWh m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Adsorption alone</td>
<td>39.1%</td>
<td>-</td>
</tr>
<tr>
<td>2.5</td>
<td>Adsorption + plasma</td>
<td>52.4%</td>
<td>22.1</td>
</tr>
<tr>
<td>30</td>
<td>Adsorption + plasma</td>
<td>78.4%</td>
<td>19.7</td>
</tr>
</tbody>
</table>
The rate constant \((k = 0.299 \pm 0.0102 \text{ min}^{-1})\) obtained in the plasma-ozonation setup is more than twice as high compared to the value found during plasma treatment alone \((k = 0.134 \pm 0.0055 \text{ min}^{-1})\). Based on the kinetic data presented in Fig. 2, the energy consumption is found to be 23.4 kWh m\(^{-3}\) and 10.4 kWh m\(^{-3}\) for the elimination of ALA by plasma and plasma-ozonation, respectively. Thus, it is evident that the bubbling of the excess plasma gas (mainly containing ozone) throughout the solution reservoir is beneficial to achieve a better removal efficiency, and a lower energy consumption.

3.2. Production of reactive species by plasma

Plasma-assisted decomposition of organic compounds is typically a complex process, that involves the participation of multiple oxidising reagents, such as reactive oxygen species (ROS). In a gas phase plasma sustained in a humid O\(_2\) atmosphere, collisions between the electrons and the gas molecules (O\(_2\), H\(_2\)O) initiate the production of oxidising species including various radicals (HO\(^*\), HO\(_2\), O, H), excited species (\(^1\)O\(_2\)), neutral molecules (O\(_3\), H\(_2\)O\(_2\), H\(_2\)) and charged ions (O\(^-\), O\(^{2-}\), O\(^{+}\), HO\(^-\), H\(^+\), HO\(^-\), O\(^-\), O\(^{2-}\), O\(^{4-}\)) through a series of chemical reactions (Bradu et al., 2017; Jiang et al., 2014).

Reactive species generated in the gas phase then diffuse in the liquid, where they initiate secondary reactions. For reactor systems that combine plasma treatment with activated carbon adsorption, organic pollutant elimination can take place simultaneously in the plasma-liquid interface, the bulk liquid and on the catalyst surface. A plausible pathway, describing the decomposition of organic compounds was put forward by Jiang et al. (2014) and is summarised in reactions R1–R8.

First, micropollutants present in the bulk liquid phase diffuse from the bulk liquid to the activated carbon surface, where a fraction of the initial ALA concentration is adsorbed (R1). The adsorption efficiency depends on the nature of the target compound, as described in Vanraes et al. (2018). From the results obtained from single-pass experiment summarised in Table 1, it could be deduced that about 49\% is removed from the solution by adsorption on the Zorflex® textile, after one pass through the reactor. Hereby, the accumulation of ALA at the active carbon textile results in a local micropollutant concentration in the region near the plasma-liquid interface, resulting in a higher probability for interactions with the plasma-generated oxidants present in the liquid-phase. Furthermore, it is important to stress that activated carbon itself also catalyses the decomposition of long-living oxidants (O\(_3\), H\(_2\)O\(_2\)), present in the bulk liquid, through a series of reactions (R2 – R7), generating highly reactive radicals in solution and attached to the adsorption material, which can contribute to the elimination of ALA. This leads to the self-regeneration of activated carbon and thus prolongs the lifetime of the activated carbon textile. Indeed, several works have suggested the use of plasma technology for the regeneration of activated carbon (Gushchin et al., 2018; Jiang et al., 2014; Qu et al., 2009; Tang et al., 2018).

\[
\text{AC} + \text{M} \rightarrow \text{AC} - \text{M} \quad \text{(R.1)} \]

\[
\text{O}_3 + \text{H} \rightarrow \text{AC} - \text{H} + \text{AC} - \text{O} + \text{H}_2\text{O}_2 \quad \text{(R.2)}
\]

\[
\text{O}_3 + \text{AC} - \text{OH} \rightarrow ^{\cdot}\text{O}_2 - \text{AC} + \text{HO}^* \quad \text{(R.3)}
\]

\[
\text{O}_3 - \text{AC} \rightarrow \text{O}_2 + ^{\cdot}\text{O} - \text{AC} \quad \text{(R.4)}
\]

\[
\text{O}_3 - \text{AC} + \text{O} - \text{AC} \rightarrow ^{\cdot}\text{O}_2 + ^{\cdot}\text{O} + \text{AC} \quad \text{(R.5)}
\]

\[
\text{AC} + \text{H}_2\text{O}_2 \rightarrow \text{AC}^+ + \text{HO}^- + \text{HO}^* \quad \text{(R.6)}
\]

\[
\text{AC}^+ + \text{H}_2\text{O}_2 \rightarrow \text{AC} + \text{H}^+ + \text{HO}_2^* \quad \text{(R.7)}
\]

\[
\text{AC} - - \text{M} + \text{HO}^* \rightarrow \text{AC} + \text{P} \quad \text{(R.8)}
\]

To elucidate the role that oxidising species can play in the elimination of ALA, the contribution of various chemical oxidants to ALA removal was studied in the following sections.

3.2.1. Hydrogen peroxide in batch-mode

Fig. 3 illustrates the formation of H\(_2\)O\(_2\) in the liquid phase for the batch-recirculating configuration. A linear increase of H\(_2\)O\(_2\) concentration was observed in deionized water, reaching a concentration of ca. 220 \(\mu\)M, while a higher amount (272 \(\mu\)M) of H\(_2\)O\(_2\) was formed in the presence of ALA, after 30 min of treatment. A similar finding, i.e. a higher concentration of H\(_2\)O\(_2\) in the presence of an organic compound dissolved in deionized water was previously reported in a pulsed corona discharge (Magureanu et al., 2016).

It is well-documented that hydrogen peroxide is mainly formed from radical-radical recombination reactions in the plasma-treated liquid (R9–10). Following this consideration, the detection of H\(_2\)O\(_2\) in solution indirectly confirmed the presence of radical species (HO\(^*\), HO\(^\cdot\)). As an additional source, in gas phase discharge, part of the H\(_2\)O\(_2\) found in the liquid might be attributed to the direct transfer of H\(_2\)O\(_2\) from the gas phase plasma to the liquid, due to its high Henry’s constant \((HCC = 1.92 \times 10^6)\) (Lietz and Kushner, 2016; Heisman et al., 2019).

\[
\text{HO}^* + \text{HO}^* \rightarrow \text{H}_2\text{O}_2 \quad \text{(R.9)}
\]

\[
\text{HO}_2^* + \text{HO}_2^* \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \quad \text{(R.10)}
\]

Franclemont et al. (2015) reported H\(_2\)O\(_2\) concentrations up to 800 \(\mu\)M in a pulsed corona discharge directly in the liquid, while Sarangapani et al. (2017) observed a smaller amount of H\(_2\)O\(_2\) (450 \(\mu\)M) in a DBD reactor fed with air. Further, Kovacevic et al. (2017) showed that the production of H\(_2\)O\(_2\) in a liquid film...
reactor depends on the nature of the feed gas. The authors observed the largest H₂O₂ concentration in pure Ar (588 μM). On the contrary a slightly smaller concentration of H₂O₂ could be detected during air plasma treatment (441 μM). The latter is explained by the consumption of H₂O₂ due to the reaction with nitrite (NO₂⁻) which takes place in an acidic environment.

The efficiency of H₂O₂ generation in plasma reactor is often expressed by the H₂O₂ energy yield (g kWh⁻¹). In the review of Locke and Shih (2011) H₂O₂ energy yields were summarized for a variety of plasma reactors. H₂O₂ energy yields up to 80 g kWh⁻¹ were reported for reactor configurations where the plasma was generated in the liquid while in most DBD reactors, energy yield was calculated to be around 2.70 g kWh⁻¹. In this study, the H₂O₂ yield was substantially lower. For instance, in the absence of ALA, the H₂O₂ production efficiency was 49.2 × 10⁻² g kWh⁻¹. Likely, a part of H₂O₂ formed in the bulk liquid is decomposed on the activated carbon textile, in agreement with reactions R.6 and R.7. Note that, according to this reaction mechanism, H₂O₂ is converted into HO⁻ and HO²⁻ radicals, which have a higher reactivity with organic pollutants, and might thus be beneficial to achieve a faster pollutant decomposition.

3.2.2. Electron paramagnetic resonance measurements for assessing oxygen-derived reactive species

The presence of oxygen-derived reactive species such as ozone (O₃), atomic oxygen (O¹), and singlet oxygen (¹O₂) was assessed in the liquid, using electron paramagnetic resonance (EPR) spectroscopy with a spin trap 4-oxo-2,2,6,6-tetramethyl-1-piperidine (4-oxo-TEMP). Upon the oxidation of the amine group by these species, a stable nitroxide radical 4-oxo-2,2,6,6-tetramethyl-1-piperidine N-oxyl (4-oxo-TEMPO) is formed, as illustrated in Fig. 4 (Elg et al., 2017; Privat-Maldonado et al., 2018; Takamatsu et al., 2014), and its concentration is measured using EPR as described in section 2.5 and Text S2. It is worth mentioning that other potentially present species such as hydroxyl and superoxide radicals, as well as hydrogen peroxide, were shown to not oxidise piperidines in plasma-liquid systems (Gorbanev et al., 2016a,b). It also must be noted that spin trapping does not provide quantitative information about the total concentration of a reactive species present in the liquid (Privat-Maldonado et al., 2018; Rezaei et al., 2018). However, the changes in the concentration of the formed 4-oxo-TEMPO directly correlate with the changes in the concentrations of initially available free ROS (Elg et al., 2017; Gorbanev et al., 2016a,b).

The presence of various ROS was first analysed for the single-pass experiments. 5 mM solutions of 4-oxo-TEMP in water with and without ALA were passed through the plasma chamber once. In this case, the concentration of 4-oxo-TEMPO correlates to the sum of concentrations of initially available oxidising species (O, O³, O₂) in the liquid after plasma exposure (condition 1).

To elaborate on the individual contributions of ROS to the oxidation of 4-oxo-TEMP, two additional sets of experiments were carried out. First, the experiments were repeated with solutions containing 50 mM of added sodium azide (a quencher of O³ at neutral pH (Elg et al., 2017; Gorbanev et al., 2016a,b; Takamatsu et al., 2014)) (condition 2). Second, solutions containing only ALA were treated, and 5 mM 4-oxo-TEMP was added to the aqueous solution immediately after the sample collection, with a maximal time delay of about 5 s (condition 3). Taking into account the short lifetime of oxygen species such as O³, O₂ and O in aqueous solutions, the formation of 4-oxo-TEMPO in these experiments can be assigned to the presence of O₃ in the treated solutions.

The results for both solutions with and without ALA are shown in Fig. 5. The formation of 4-oxo-TEMPO up to a concentration of ca. 35 μM clearly established the presence of ROS in the plasma-treated solution. To explore the potential difference in the concentration of 4-oxo-TEMPO detected in the solution, a Student’s t-test was conducted. Within the accuracy of the measurements, the concentration of 4-oxo-TEMPO under all three conditions was found to be similar in the presence and absence of ALA (p > 0.05). In other words, the presence of ALA does not dramatically affect the concentration of the formed 4-oxo-TEMPO and therefore the concentration of available ROS. This is likely due to the large difference (three orders of magnitude) in the initial concentrations of ALA and 4-oxo-TEMP.

The addition of NaN₃ to the initial solution (condition 2) strongly reduced the concentration of 4-oxo-TEMPO. It was shown that NaN₃ does not affect the concentration of the formed nitroxide in the plasma-liquid systems when O₃ and O (without O³) are both present in the liquid (Elg et al., 2017; Gorbanev et al., 2016a,b). Therefore, the reduced formation of 4-oxo-TEMPO when NaN₃ was added to the solution, is attributed to the scavenging of O³. This means that O³ is created in the gas phase plasma, and further diffused into the liquid, where it contributes to the degradation of ALA.

A substantially lower (but still detectable) amount of 4-oxo-TEMPO was also formed when 4-oxo-TEMP was added to the
aqueous solutions collected from the reactor outlet. Considering the short lifetime of O and 1O2 in aqueous solutions, the formation of 4-oxo-TEMPO in this experiment shows the presence of residual O3 in the liquid. This proves that O3 is present in the treated water even during the single pass configuration (e.g. without using additional ozonation).

Further, experiments were performed in batch mode, in which the liquid was continuously recirculated between the solution reservoir and the plasma chamber (see Fig. 1 above). In these experiments, 500 mL of the solution was continuously passed through the plasma reactor at a flow rate of 56.3 mL/min⁻¹, and samples were taken directly from the solution reservoir. The concentration of 4-oxo-TEMPO was measured in the analysed samples for the same experimental conditions as used in the single-pass experiments, and is shown in Fig. 6.

Under conditions 1 and 2, the concentration of the formed 4-oxo-TEMPO increased near-linearly within the experimental timeframe (Fig. 6). Additionally, an increase in the amount of the residual O3 (condition 3) was noticed as presented in Fig. S4 in the Supplementary Material. No significant difference was observed between the solution with and without ALA, consistently with the results obtained in the single-pass experiments (Fig. 5). Furthermore, in Fig. 6, the low concentration of the formed 4-oxo-TEMPO after 2.5 and 5 min can in part be explained by the dilution of the solution that passed through the reactor with the rest of the solution in the reservoir. Alternatively, the lower concentration of 4-oxo-TEMPO detected in batch mode can also be attributed to enhanced degradation of the formed nitroxide (N–•) radicals moiety in the 4-oxo-TEMPO molecule at prolonged plasma exposure times. The nitroxide group is prone to decay caused by e.g. HO• radicals in plasma-liquid systems (Gorbanev et al., 2016b). At longer exposure times, H2O2 was accumulating in the liquid solution, as presented earlier in Fig. 3. At high concentrations, H2O2 can react with atomic O (Elg et al., 2017; Hefny et al., 2016; Verlackt et al., 2017) or O2 (Merenyi et al., 2010), generating large amount of additional HO• radicals in the liquid.

3.3. Oxidation products

As mentioned above, several oxidising species might be generated during plasma treatment and therefore potentially be involved in the decomposition of alachlor. It has been reported that the hydroxyl radical (HO•) preferentially reacts with organic compounds through three major reaction pathways, being (i) the abstraction of a hydrogen atom, ii) the electrophilic addition of a HO• radical to multiple bonds, and iii) electron transfer reactions. To the best of our knowledge, no information is available in the literature concerning the reaction mechanisms of organic compounds with other oxidants (i.e. O or 1O2). Therefore, it is not possible to assign the detection of a certain by-product to the presence of a specific oxidant in solution.

For the reactor operated in batch-recirculation mode, the oxidation by-product analysis has already been reported in our previous work (Vanraes et al., 2018). For oxygen plasma, four types of oxidation steps were observed:

- hydroxylation;
- addition of a double bonded oxygen;
- dealkylation;
- dechlorination.

As shown in Table S3 in the Supplementary Material, most of the by-products that were identified in the previous study (when plasma was ignited in either O2 or air; Vanraes et al. (2018)) are also found in the present study for treatment with O2 plasma in the single-pass flow-through setup. The exception was dechlorinated ALA (2D), demethylated ALA with and without the addition of a double bonded oxygen (3B and 3U), and four compounds formed through one or more hydroxylation and/or oxygen addition steps (3I, 3R, 3S and 3Z). A proposed reaction pathway in the plasma reactor is given in Fig. 7. As expected, the four oxidation steps are observed in the single-pass configuration in most identified by-products.

Comparison of the ion abundances in the HPLC-TOF-MS analysis indicates a majority of hydroxylated by-products, such as the five monohydroxylated isomers K (see Fig. 8). Compounds formed through the addition of a double bonded oxygen make the next most abundant group, including the R and E isomers with one and two added oxygen atoms, respectively. This stands in contrast with the results for treatment in the batch reactor configuration, where by-products with a double bonded oxygen dominated in the analysis results (see Fig. 8(b)). Especially one of the R isomers, i.e. R°, was found in a remarkably high abundance. It should be noted that the mentioned abundance values are only indicative for the corresponding by-product concentration. Although the HPLC-TOF-MS method is expected to have a similar sensitivity to compounds with a similar chemical structure, a calibration for each of the products would be required to obtain exact concentrations. Therefore, the abundance values can be used to get an idea of the order of magnitude of the concentration, but should not be understood as exact concentration values.

Second, the abundance of any compound in Fig. 8 for the batch reactor configuration corresponds to the sample with its highest abundance, i.e. taken after at least 2.5 min of treatment. In contrast, the HRT of the solution in the plasma reactor is about 2 s. This retention time applies to the plasma reactor in the batch configuration as well. Keeping this in mind, the high abundance of R° in the batch reactor relative to the single-pass configuration cannot be explained solely with the processes in the plasma reactor and is probably mainly due to the chemistry in the ozonation chamber. R° has indeed been reported as the main ALA oxidation by-product for ozonation and the peroxone process (Qiang et al., 2010), which are
expected to be the main oxidation processes in the solution reservoir. This seems to imply that the addition of a double bonded oxygen is generally a more common mechanism than hydroxylation during ALA oxidation in ozonation or the peroxone process, which can explain the observed difference in their prevalence between the single-pass and batch experiments.

Next to hydroxylation and addition of a double bonded oxygen, dechlorination and dealkylation of the ALA side chains is observed in all studied conditions, albeit to a lower degree (Fig. 8). Remarkably, a few by-products are measured in the single-pass reactor configuration that cannot be explained solely with these four types of oxidation steps. The by-products I and T, for instance, require an additional step with hydrogen subtraction and likely the formation of a double or triple bond between two carbons. Further, as seen in Table S3, the mass spectrum of by-product X displays the same dissociation pattern as ALA. In this pattern, the first daughter ion is formed with the release of a CH$_3$OH fragment, which sequentially results in the second daughter ion by the elimination of a C$_2$HClO fragment. Since both fragments originate from the N-substituted branch, this branch is identical for both molecules. Therefore, the oxidation mechanisms that led to by-product X took place at the other part of the molecule. This, however, implies that the chemical
formula of X cannot be explained with an aromatic ring, as it has a lower degree of unsaturation. In other words, the aromatic structure has been lost in X and perhaps ring cleavage has taken place. This is a very important finding, since the loss of aromaticity, although expected to occur (Qiang et al., 2010), is not frequently observed in advanced oxidation processes. Noteworthy, some of the other by-products in Fig. 8 also may have lost their aromatic structure, for instance if the combination of ring breaking and the addition of a double bonded oxygen has instead been identified as a hydroxylation step (the HPLC-TOF-MS measurements can often not distinguish between both types of isomers).

3.4. Influence of additional ozonation

In the plasma discharge, ozone is formed from a three-body reaction involving, atomic oxygen (O) and molecular oxygen (O2) (R. 11).

\[
O^* + O_2 + M \rightarrow O_3 + M \quad (R.11)
\]

Additional plasma gas bubbling into the solution reservoir appeared to be beneficial for the removal efficiency and energy consumption, as shown above in Fig. 2. To assess the contribution of O3 to the degradation of ALA, the amount of gaseous O3 generated at the outlet of the plasma reactor and the solution reservoir was measured. The concentration of O3 detected at the exhaust of the solution reservoir, was found to be lower \((7738 \pm 8 \text{ mg m}^{-3})\) as compared to the amount of O3 produced at the outlet of the plasma reactor \((8789 \pm 26 \text{ mg m}^{-3})\). At steady-state conditions, the total O3 consumption in the ozonation chamber was determined by subtracting the amount of ozone measured at the exhaust of the ozonation chamber from the gaseous ozone concentration detected at the outlet of the plasma chamber. This confirmed that in the plasma-ozonation setup about \(1051 \text{ mg m}^{-3}\) O3 was dosed in the solution reservoir, where it reacted with the pesticide and its by-products, or other oxidative species present in the liquid generating additional radicals (such as e.g. a reaction between H2O2 and O3 (Merenyi et al., 2010; Wang et al., 2018). The production of hydroxyl radicals during the decomposition of O3 is particularly advantageous, due to their extremely high, nearly diffusion-controlled reaction rate constants with most organic pollutants (Wols and Hofman-Caris, 2012).

4. Conclusion

In this work, the removal of a chlorinated pesticide (ALA) from deionized water was studied in a pulsed DBD plasma reactor, combining plasma treatment with adsorption and additional ozonation. The contribution of each distinct removal process was evaluated and a comparison in reactor performance between a single-pass and batch-recirculation configuration was made. In both configurations, the lowest removal efficiency was observed when ALA removal was attempted with activated carbon adsorption alone. In the single-pass experiments, about 39% was removed after one pass through the reactor, and more than 80% of ALA was
adsorbed after 30 min of treatment in batch recirculation mode. With regard to the energy efficiency of ALA removal during plasma treatment in combination with activated carbon adsorption, a slightly better energy cost is obtained in the single-pass configuration (EE/O_{single-pass} = 19.4 kWh m\(^{-3}\)) than in batch-recirculation mode (EE/O_{batch} = 23.4 kWh m\(^{-3}\)).

To evaluate the role of aqueous oxidants on the decomposition of ALA, the production of various active species (H\(_2\)O\(_2\), O\(_2\), O) was monitored by UV–Vis spectrophotometry and EPR spectroscopy. From EPR analysis, the presence of O\(_2\), O\(_3\) and O was identified in the plasma-treated solution, and could thus contribute to the decomposition of alachlor. Interestingly, the H\(_2\)O\(_2\) concentration formed in the reactor (220 \(\mu\)M) was slightly lower than the amount of H\(_2\)O\(_2\) usually detected (i.e. up to a few mM) during plasma treatment in a DBD. This could be attributed to the decomposition of H\(_2\)O\(_2\) on the catalyst surface. Future experimental and computational (micro-kinetic) studies could provide more details of the exact mechanism.

The reaction intermediates of ALA in the single-pass configuration are mainly formed through six major mechanisms, including various hydroxylation, dealkylation, and dechlorination reactions, as well as the loss of aromaticity. Finally, the abundant production of O\(_2\) in the plasma suggested that the process could be enhanced by bubbling the plasma exhaust gas into the solution reservoir. The energy cost was almost two times lower with the plasma exhaust gas bubbling through the solution (EE/O = 10.4 kWh m\(^{-3}\)) when compared with plasma treatment alone (EE/O = 23.4 kWh m\(^{-3}\)) at 90% ALA removal.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the PlasmaTix project (IWT 14082) and the European Marie Skłodowska-Curie Individual Fellowship within Horizon2020 (‘LTPAM’, grant no. 743151). This research was initiated within the LED H2O project which is financially supported by the Flemish Knowledge Centre Water (Vlakwa).

Appendix A. Supplementary data

Supplementary data to this article can be found at https://doi.org/10.1016/j.watres.2019.06.022.

References

The reaction intermediates of ALA in the single-pass configuration are mainly formed through six major mechanisms, including various hydroxylation, dealkylation, and dechlorination reactions, as well as the loss of aromaticity. Finally, the abundant production of O\(_2\) in the plasma suggested that the process could be enhanced by bubbling the plasma exhaust gas into the solution reservoir. The energy cost was almost two times lower with the plasma exhaust gas bubbling through the solution (EE/O = 10.4 kWh m\(^{-3}\)) when compared with plasma treatment alone (EE/O = 23.4 kWh m\(^{-3}\)) at 90% ALA removal.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the PlasmaTix project (IWT 14082) and the European Marie Skłodowska-Curie Individual Fellowship within Horizon2020 (‘LTPAM’, grant no. 743151). This research was initiated within the LED H2O project which is financially supported by the Flemish Knowledge Centre Water (Vlakwa).

Appendix A. Supplementary data

Supplementary data to this article can be found at https://doi.org/10.1016/j.watres.2019.06.022.

References

The reaction intermediates of ALA in the single-pass configuration are mainly formed through six major mechanisms, including various hydroxylation, dealkylation, and dechlorination reactions, as well as the loss of aromaticity. Finally, the abundant production of O\(_2\) in the plasma suggested that the process could be enhanced by bubbling the plasma exhaust gas into the solution reservoir. The energy cost was almost two times lower with the plasma exhaust gas bubbling through the solution (EE/O = 10.4 kWh m\(^{-3}\)) when compared with plasma treatment alone (EE/O = 23.4 kWh m\(^{-3}\)) at 90% ALA removal.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the PlasmaTix project (IWT 14082) and the European Marie Skłodowska-Curie Individual Fellowship within Horizon2020 (‘LTPAM’, grant no. 743151). This research was initiated within the LED H2O project which is financially supported by the Flemish Knowledge Centre Water (Vlakwa).

Appendix A. Supplementary data

Supplementary data to this article can be found at https://doi.org/10.1016/j.watres.2019.06.022.

References

The reaction intermediates of ALA in the single-pass configuration are mainly formed through six major mechanisms, including various hydroxylation, dealkylation, and dechlorination reactions, as well as the loss of aromaticity. Finally, the abundant production of O\(_2\) in the plasma suggested that the process could be enhanced by bubbling the plasma exhaust gas into the solution reservoir. The energy cost was almost two times lower with the plasma exhaust gas bubbling through the solution (EE/O = 10.4 kWh m\(^{-3}\)) when compared with plasma treatment alone (EE/O = 23.4 kWh m\(^{-3}\)) at 90% ALA removal.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the PlasmaTix project (IWT 14082) and the European Marie Skłodowska-Curie Individual Fellowship within Horizon2020 (‘LTPAM’, grant no. 743151). This research was initiated within the LED H2O project which is financially supported by the Flemish Knowledge Centre Water (Vlakwa).

Appendix A. Supplementary data

Supplementary data to this article can be found at https://doi.org/10.1016/j.watres.2019.06.022.

References

