To my dear mother and brother.

NUMERICAL COMPARISON OF ABSTRACT PADE-APPROXIMANTS
AND ABSTRACT RATIONAL APPROXIMANTS WITH OTHER
GENERALIZATIONS OF THE CLASSICAL PADE-APPROXIMANT **

by

Annie A.M. CUYT

Departement Wiskunde
Universitaire Instelling Antwerpen
Universiteitsplein 1
B-2610 Wilrijk
Belgium

For the introduction of abstract Padé-approximants we refer to (I)* and (II). Now we want to consider an interesting numerical example that can teach us something about the location of zeros and singularities of a nonlinear operator and its different approximations (sections 1-2-3). Also we shall compare abstract Padé-approximants for a nonlinear operator $\mathbb{R}^2 \rightarrow \mathbb{R}$ with other types of 2-variable rational approximants (sections 4-5).

* Roman figures between brackets refer to a work in the reference list.

** This work is in part supported by I.W.O.N.L. (Belgium) and in part by N.F.W.O. (Belgium).
1. Nonlinear operator

Let $F: \mathbb{R}^2 \to \mathbb{R}^2$:

$$(x, y) \mapsto \begin{pmatrix}
\frac{e^x}{2(1-10y)} - \frac{1.05-y}{1-10x} \\
\sin\left(\frac{\pi}{2} + 0.05 + x - y\right) \\
\cos\left(\frac{\pi}{2} - 0.05 - x + y\right)
\end{pmatrix} = \begin{pmatrix}
F_1(x, y) \\
F_2(x, y)
\end{pmatrix}$$

The operator F is singular for $x = 0.1$ or $y = 0.1$ or $y = x + (2k+1) \frac{\pi}{2} + 0.05$ ($k \in \mathbb{Z}$).

The second component F_2 vanishes on $y = x + k\pi + 0.05$ ($k \in \mathbb{Z}$).

For $k = 0$: $F = 0$ in $(0, 0.05)$ and $(0.37981434, \ldots)$.

For $k < 0$: the first component F_1 does not vanish on $y = x + k\pi + 0.05$.

For $k > 0$: F has two zeros x_1^* and x_2^* on $y = x + k\pi + 0.05$.

On $y = x + k\pi + 0.05$ the operator F has two poles, namely in $x_1^* = 0.05 - k\pi$ and $x_2^* = 0.01$.

A characteristic behaviour of F on $y = x + k\pi + 0.05$ for $k > 0$ and $k < 0$ is respectively shown in F1.1 and F1.2, while F1.3 shows the behaviour of F on $y = x + 0.05$ ($k = 0$).

The fact that for $k > 0$: $|x_1^* - x_1^*|$ decreases for increasing k, complicates the calculation of the root x_1^* of $F(x, y) = 0$.
2. (1,1) Abstract Padé Approximant (APA)

Let us now approximate F by a rational operator R and study the location of the zeros and the poles of this approximation. We perform the necessary calculations (as described in (1)) to obtain the $(1,1)$-APA in $(0,0)$ and have to conclude that its first component is undefined in $(0,0)$. But the second component is the $(1,1)$ Abstract Padé Approximant to the second component of F.

$$R: \mathbb{R}^2 \rightarrow \mathbb{R}^2: (x,y) \rightarrow \left(\begin{array}{c} \frac{ax+by+cx^2+dxy+ey^2}{a'x+b'y+(c'x^2+d'xy+e'y^2) \sin(\frac{\pi}{2}+0.05)} \\ \frac{\cos(\frac{\pi}{2}-0.05)+x-y}{\sin(\frac{\pi}{2}-0.05)+0.5 \cot(\frac{\pi}{2}-0.05) \cos(\frac{\pi}{2}-0.05))} \\ 1+0.5 (x-y) \cotg(\frac{\pi}{2}-0.05) \end{array} \right)$$

with $a = -0.3025 \cotg(\frac{\pi}{2}+0.05) + 5.5$

$b = 0.3025 \cotg(\frac{\pi}{2}+0.05) - 3.3$

$c = 42.3875 - 5.5 \cotg(\frac{\pi}{2}+0.05) - 0.3025/\sin^2(\frac{\pi}{2}+0.05)$

$d = -111.75 + 9.6 \cotg(\frac{\pi}{2}+0.05) + 0.605/\sin^2(\frac{\pi}{2}+0.05)$

$e = 63.5 - 3.3 \cotg(\frac{\pi}{2}+0.05) - 0.3025/\sin^2(\frac{\pi}{2}+0.05)$

$a' = 0.55 \cos(\frac{\pi}{2}+0.05) - 10 \sin(\frac{\pi}{2}+0.05)$

$b' = -0.55 \cos(\frac{\pi}{2}+0.05) + 6 \sin(\frac{\pi}{2}+0.05)$

$c' = 0.55 \cotg^2(\frac{\pi}{2}+0.05) - 10 \cotg(\frac{\pi}{2}+0.05) + 104.75 + 0.55/\sin^2(\frac{\pi}{2}+0.05)$

$d' = -1.1 \cotg^2(\frac{\pi}{2}+0.05) + 16 \cotg(\frac{\pi}{2}+0.05) - 15 - 1.1/\sin^2(\frac{\pi}{2}+0.05)$

$e' = 0.55 \cotg^2(\frac{\pi}{2}+0.05) - 6 \cotg(\frac{\pi}{2}+0.05) - 50 + 0.55/\sin^2(\frac{\pi}{2}+0.05)$.
The second component R_2 vanishes on
\[
y = x + \frac{\cos(\frac{\pi}{2} - 0.05)}{\sin(\frac{\pi}{2} - 0.05) + 0.5\cot(\frac{\pi}{2} - 0.05)\cos(\frac{\pi}{2} - 0.05)}
\]
\[= x + 0.0499...
\]

R has two zeros, near to the zeros of F on $y = x + 0.05$ (k=0), namely
in $0.00252235...$ and $0.49805568...$.

Because numerator and denominator of R are polynomial operators we lose the periodicity of F (no infinite number of zeros). The abstract rational approximant has distributed its poles in a very interesting manner.

Looking at $F_{2.1}$ and $F_{2.2}$ which show the poles of F (plotted as OOO-lines) and those of R (plotted as XXX-lines) in the considered area, we remark that the dominating direction of the first bisector for the poles of F is somewhat found back in the asymptotic behaviour of the poles of R_1 (hyperbola) and in the situation of the poles of R_2 on $y = x + 39,966...$.

X-axis and Y-axis are marked by dots (...) as well as the asymptotes for the poles of R_1: $y = 1.305x - 0.015$

$y = -1.649x + 0.138$
3. Taylor series expansion

Since for functions \(f : \mathbb{R} \to \mathbb{R} \) we can compare the curve-fitting ability of a rational function of degree \(n \) in the numerator and degree \(m \) in the denominator with that of a polynomial of degree \(n+m \), we also calculated the Taylor series expansion \(T \) in \((\theta,0)\) up to and including 2\(^{nd}\) order terms.

\[
T : \mathbb{R}^2 \to \mathbb{R}^2 : (x,y) \mapsto \left(\begin{array}{c} -0.55 \frac{\sin(\frac{\pi}{2} + 0.05)}{a x + b y + c x^2 + d x y + e y^2} \\ \cos(\frac{\pi}{2} - 0.05) + (x-y) \sin(\frac{\pi}{2} - 0.05) - 0.5 (x-y)^2 \cos(\frac{\pi}{2} - 0.05) \end{array} \right)
\]

\[
= \left(\begin{array}{c} T_1(x,y) \\ T_2(x,y) \end{array} \right)
\]

with

\[
a = \frac{1}{\sin(\frac{\pi}{2} + 0.05)} \left(0.55 \cotg(\frac{\pi}{2} + 0.05) - 10 \right)
\]

\[
b = \frac{1}{\sin(\frac{\pi}{2} + 0.05)} \left(-0.55 \cotg(\frac{\pi}{2} + 0.05) + 6 \right)
\]

\[
c = \frac{1}{\sin(\frac{\pi}{2} + 0.05)} \left(-0.55 \frac{1 + \cos^2(\frac{\pi}{2} + 0.05)}{\sin^2(\frac{\pi}{2} + 0.05)} + 10 \cotg(\frac{\pi}{2} + 0.05) - 104.75 \right)
\]

\[
d = \frac{1}{\sin(\frac{\pi}{2} + 0.05)} \left(1.1 \frac{1 + \cos^2(\frac{\pi}{2} + 0.05)}{\sin^2(\frac{\pi}{2} + 0.05)} - 16 \cotg(\frac{\pi}{2} + 0.05) + 15 \right)
\]

\[
e = \frac{1}{\sin(\frac{\pi}{2} + 0.05)} \left(-0.55 \frac{1 + \cos^2(\frac{\pi}{2} + 0.05)}{\sin^2(\frac{\pi}{2} + 0.05)} + 6 \cotg(\frac{\pi}{2} + 0.05) + 50 \right)
\]
F3.1 which shows the zeros of T_1 (hyperbola) and T_2 (straight lines) demonstrates that we do not have to look for zeros of T near the origin. The singularities of F are the cause of this bad behaviour of T.

But T_2 does also preserve the dominant direction of the first bisector for the zeros of F.

Assume that we got x_0^0, the point in which the approximations were calculated, from a previous iteration-step in a procedure that calculates the root (x_0^0, y_0^0) of $F(x,y) = 0$.

Calculating the approximation R and equating its numerator to zero would supply a good estimate of (x_0^0, y_0^0), while the approximation T cannot be used to obtain an estimate of the root in (x_0^0, y_0^0).

F3.1
4. Different Padé-type 2-variable rational approximants

We are going to compare Abstract Padé Approximants (APA) or Abstract Rational Approximants (ARA) for F with Chisholm diagonal (III) approximants (CA) or Hughes Jones off-diagonal (IV,V) approximants (HJA), Lutterodt (VII)-approximants (LA), Lutterodt-approximants of type V (VIII) (LARI), Karlsson and Wallin-approximants (VI) (KWA) and partial sums of the abstract (IX) Taylor-series development (PS), all in \(\binom{\alpha}{\beta} \).

The calculation of each type of approximant \(\frac{P}{Q} : \mathbb{R}^2 \rightarrow \mathbb{R} \) is based on:

\[
(FQ-P)(x,y) = \sum_{i,j=0}^{\infty} d_{ij} x^i y^j \text{ with } d_{ij} = 0 \text{ for } (i,j) \notin S \subset \mathbb{N}^2.
\]

We call \(S \) the interpolation set; the choice of \(S \) determines the type of approximant. The KWA is unique when the interpolation set \(S \) contains in addition to \(\{(i,j) | i+j \leq n\} \), as many points as possible in a given enumeration in \(\mathbb{N}^2 \) (we have used the diagonal enumeration \((0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),\ldots\)).

The LA need not be unique with respect to the chosen interpolation set (we shall give the interpolation set together with the calculated approximant).

For the CA, HJA and LA we denote by \(\frac{n_1,n_2}{m_1,m_2} \) a rational approximant of degree \(n_1 \) in \(x \) and \(n_2 \) in \(y \) in the numerator and of degree \(m_1 \) in \(x \) and \(m_2 \) in \(y \) in the denominator. For the APA and KWA we denote by \(n/m \) a rational approximant where the sum of the degrees in \(x \) and \(y \) is at most \(n \) in the numerator and at most \(m \) in the denominator.

The \(n \)th partial sum of the Taylor series development is indicated by \(PS_n \).

Let \(N \) be the amount of (unknown) coefficients in the approximant (for rational approximants 1 coefficient can always be determined by a normalisation).

We consider \(N-1 \) to be a measure for the "operator-fitting" ability of the calculated rational approximant, and \(N \) to be a measure for the "operator-fitting" ability of the considered partial sum of the Taylor-series development.
For CA, HJA and LA: $N = (n_1+1)(n_2+1) + (m_1+1)(m_2+1)$.

For KWA and APA: $N = \frac{1}{2}(n+1)(n+2) + \frac{1}{2}(m+1)(m+2)$.

For PSn: $N = (n+1)(n+2)/2$.

For increasing N we expect increasing accuracy.

We do remind that for all the types of rational approximants considered, except LAB1, a lot of classical properties of Padé-approximants for analytic functions: $\mathbb{R} \to \mathbb{R}$ remain valid, now for analytic operators: $\mathbb{R}^2 \to \mathbb{R}$, such as:

a) reciprocal covariance: if $F(0,0) \neq 0$ and P/Q is the Padé-type approximant for F with interpolation set S, then Q/P is the Padé-type approximant for $\frac{1}{F}$ with the same interpolation set.

b) if P/Q is a diagonal Padé-type approximant $((n_1, n_2) = (m_1, m_2)$ or $n = m)$ and for $a, b, c, d \in \mathbb{R}$: $ad-bc \neq 0$, $cF(0,0)+d \neq 0$,

then $(aP+bQ)/(cP+dQ)$ is the Padé-type approximant $((n_1, n_2)/(m_1, m_2)$ or $n/m)$ for $\frac{aF+b}{cF+d}$ with the same interpolation set.

But only the CA, HJA, LA type B^1 and APA have the projection property: equating in the Padé-type approximant P/Q a variable to zero, supplies the Padé-type approximant in the remaining variables.
5. Examples and conclusions

a) Let us consider $F : \mathbb{R}^2 \to \mathbb{R}$: $(x,y) \mapsto 1 + \frac{x}{0.1-y} + \sin(xy)$.

<table>
<thead>
<tr>
<th>type</th>
<th>approximant</th>
<th>N</th>
<th>exact order of F_{Q-P}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PS 2</td>
<td>$1 + 10x + 101xy$</td>
<td>6</td>
<td>$O(xy^2)$</td>
</tr>
<tr>
<td>2 HJA(1,1)/(0,1)</td>
<td>degenerate $\frac{1 + 10x + ay + (101 + 10a)xy}{1 + ay}$</td>
<td>6</td>
<td>$O(xy^2)$</td>
</tr>
<tr>
<td></td>
<td>$\alpha = \begin{cases} -1000 & \text{if } \frac{101}{101} \ 0 & \text{if } \frac{100}{101} \end{cases}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 HJA(1,0)/(1,1)</td>
<td>$1 + 10x$</td>
<td>6</td>
<td>$O(x^2y)$</td>
</tr>
<tr>
<td></td>
<td>$1 - 101xy$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 HJA(0,1)/(1,1)</td>
<td>degenerate $\frac{1 - (\frac{101 + a}{10})y}{1 - 10x - (\frac{101 + a}{10})y + axy}$</td>
<td>6</td>
<td>$O(x^2y)$</td>
</tr>
<tr>
<td>5 HJA(1,1)/(1,0)</td>
<td>$1 + 10x + 101xy$</td>
<td>6</td>
<td>$O(xy^2)$</td>
</tr>
<tr>
<td>6 KWA 1/1</td>
<td>$1 + 10x - 10.1y$</td>
<td>6</td>
<td>$O(xy^2)$</td>
</tr>
<tr>
<td></td>
<td>$1 - 10.1y$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 LA(1,1)/(0,1)</td>
<td>$\begin{cases} 1 + 10x + ay + (101 + 10a)xy \ j \rightarrow i \end{cases}$</td>
<td>6</td>
<td>see 2</td>
</tr>
<tr>
<td></td>
<td>$1 + ay$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 LA(1,0)/(1,1)</td>
<td>$\begin{cases} 1 + 10x \ j \rightarrow i \end{cases}$</td>
<td>6</td>
<td>$O(x^2y)$</td>
</tr>
<tr>
<td></td>
<td>$1 - 101xy$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 APA 1/1</td>
<td>$\begin{cases} 1 + 10x - 10.1y \ j \rightarrow i \end{cases}$</td>
<td>6</td>
<td>$O(xy^2)$</td>
</tr>
<tr>
<td></td>
<td>$1 - 10.1y$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 CA(1,1)/(1,1)</td>
<td>degenerate $\frac{1 + 10x + (10 - 10a)y + axy}{1 + (10 - 10a)y + (101a - 201)xy}$</td>
<td>8</td>
<td>$O(x^2y, xy^2)$</td>
</tr>
<tr>
<td></td>
<td>$\alpha = \begin{cases} \frac{201}{101} & \text{if } \frac{101}{101} \ 0 & \text{if } \frac{100}{101} \end{cases}$</td>
<td></td>
<td>$O(xy^3)$</td>
</tr>
</tbody>
</table>
148

14. HJA(1,2)/(0,2)

degenerate

\[1 + 10x + ay + (101 + 10\alpha)xy + \varepsilon y^2 + (10\beta + 101\alpha + 1000)xy^2 \]

\[1 + ay + 8y^2 \]

19. HJA(2,1)/(0,2)

degenerate

\[1 + 10x + ay + (101 + 10\alpha)xy \]

\[1 + ay + 8y^2 \]

23. LA(1,2)/(0,2)

\[1 + 10x + ay + (101 + 10\alpha)xy + 8y^2 + (10\beta + 101\alpha + 1000)xy^2 \]

\[1 + ay + 8y^2 \]

with \(\varepsilon = -10^3(10 + \alpha)/101 \)

24. LA(2,1)/(0,2)

\[1 + 10x - \frac{1000}{101} y + \frac{201}{101} xy \]

\[1 + ay \]

25. KWA 1/2

\[1 + 10x - 10.1y \]

\[1 - 10.1y \]

26. ARA 1/2

\[x - 1.01y + 10y^2 + 10x^2 - 20.2xy \]

\[x - 1.01y + 10y^2 - 10.1xy + 2.01xy^2 \]

28. APA 2/1

\[1 + 10x - \frac{1000}{101} y + \frac{201}{101} xy \]

\[1 - \frac{1000}{101} y \]

30. KWA 2/1

\[1 + 10x - \frac{1000}{101} y + \frac{201}{101} xy \]

\[1 - \frac{1000}{101} y \]

34. PS 3

\[1 + 10x + 101xy + 1000xy^2 \]

\[0(x^3y^3) \]

39. CA(2,2)/(1,1)

degenerate

\[1 + (10 + \alpha)x - 10y + (\varepsilon + 1)xy + 10\alpha x^2 - 10\alpha y^2 + (10\beta + 101\alpha)x^2y + (101\beta + 1000\alpha)x^2y^2 \]

\[1 + \alpha x - 10y + \beta xy \]
For each of the mentioned approximations of the first example we have plotted the surface $|F(x,y)-\text{approximation}(x,y)|$ on $A = [-0.09,0.09] \times [-0.09,0.09]$ (F6.1-F5.10), nearly all from the same viewpoint.

We have also calculated an estimate e_r of

\[
\frac{\sup_A |F(x,y)-\text{approximation}(x,y)|}{\sup_A |F(x,y)|}
\]

which is a measure for the relative error made by approximating $(\sup_A |F(x,y)| \approx 10)$.

We remark that we may call the APA accurate.
\[F(x,y) - (1 + 10x + 101xy) \]
\[\varepsilon_r = 0.73 \]
viewpoint (1,2,10)

\[F(x,y) = \frac{1 + 10x - 1001y}{1 + 10x + 201y} \]
\[\varepsilon_r = 0.06 \]
viewpoint (1,2,10)

\[F(x,y) = 1 - 10.1y \]
\[\varepsilon_r = 90.1 \]
viewpoint (1,1,100) because of steepness

\[F(x,y) = \frac{1 + 10x}{1 - 101xy} \]
\[\varepsilon_r = 0.81 \]
viewpoint (1,2,10)
\[F(x, y) = \frac{1 + 10x - 10.1y}{1 + 10.1y} \]
\[\epsilon_p = 0.09 \]
viewpoint (1,2,10)

\[F(x, y) = \frac{1 + 10x - 10y + 100xy - 1000y^2}{1 - 10y} \]
\[\epsilon_p = 0.66 \]
viewpoint (1,2,10)

\[F(x, y) = \frac{1 + 10x - 10y + 1000xy + 10000y^2}{1 - 10y} \]
\[\epsilon_p = 0.73 \]
viewpoint (1,2,10) because of flatness

\[F(x, y) = \frac{1 + 10x - 10y + xy - 100xy^2}{1 - 10y} \]
\[\epsilon_p = 0.9 \times 10^{-7} \]
viewpoint (1,2,1) because of flatness
\[F_5.9 \]
\[
\left| \frac{F(x,y) - (x - 1.01y + 10y^2 + 10x^2 - 20.2xy)}{x - 1.01y + 10y^2 - 10.1xy + 2.01x^2y} \right|
\]
\(\epsilon_r = 0.07 \) (equating \(|F - ARA 1/2| \) to 0)

viewpoint (1,2,10)

\[F_{6.10} \]
\[
\left| F(x,y) - (1 + 10x + 101xy + 1000xy^2 + 10000xy^2) \right|
\]
\(\epsilon_r = 0.6 \)

viewpoint (1,2,10)
We merely have to compare ϵ_r for $1 - 9$ and remark that at F6.2 and F6.5 the most accurate approximations are gathered; HJA(1,1)/(0,1) is a bit more accurate than KWA 1/1 and APA 1/1 because a rational function $(1,1)/(0,1)$ fits very well the behaviour of F; however sometimes the approximation cannot be adjusted to F in this way (more complicated operators F) and we can as well at random have chosen worse approximants without knowing it (e.g. $(1,0)/(1,1)$ or $(0,1)/(1,1)$ or $(1,1)/(1,0)$ in this case)

ϵ_r for $10 - 19$ and remark that F6.2 and F6.9 gather very good approximations; only HJA(1,2)/(0,2) is better, partly because of the very degenerate solution and partly because the denominator $1+ay+by^2$ can fit F very well

ϵ_r for $20 - 24$ and remark that PS 4 is very bad in comparison with all the rational approximations, what was to be expected.

We compare the different types of approximants on two other examples.

h) Let us consider $F: \mathbb{R}^2 \rightarrow \mathbb{R}: (x,y) \rightarrow \frac{x e^x - ye^y}{x-y} = \sum_{i,j=0}^{\infty} \frac{1}{(i+j)!} x^i y^j$.

Here we have in the Taylor series expansion of F a term in every power $x^i y^j$.

We compare the function values in some points.
\[
F(x,y) = \frac{x^e - ye^y}{x - y}
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(0.05)</th>
<th>(0.25)</th>
<th>(0.25)</th>
<th>(0.65)</th>
<th>(0.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.342</td>
<td>1.342</td>
<td>1.924</td>
<td>2.697</td>
<td>3.718</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>1.339</td>
<td>1.339</td>
<td>1.889</td>
<td>2.559</td>
<td>3.349</td>
</tr>
<tr>
<td>1</td>
<td>0.45</td>
<td>1.308</td>
<td>1.343</td>
<td>1.800</td>
<td>2.630</td>
<td>3.222</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
<td>1.328</td>
<td>1.328</td>
<td>2.032</td>
<td>2.109</td>
<td>4.153</td>
</tr>
<tr>
<td>0.45</td>
<td>1</td>
<td>1.344</td>
<td>1.344</td>
<td>1.958</td>
<td>2.887</td>
<td>4.455</td>
</tr>
<tr>
<td>0.65</td>
<td>1</td>
<td>1.344</td>
<td>1.344</td>
<td>1.936</td>
<td>2.742</td>
<td>3.819</td>
</tr>
<tr>
<td>0.65</td>
<td>0.25</td>
<td>1.343</td>
<td>1.308</td>
<td>1.903</td>
<td>2.419</td>
<td>3.609</td>
</tr>
<tr>
<td>0.65</td>
<td>0.45</td>
<td>1.308</td>
<td>1.343</td>
<td>1.800</td>
<td>2.630</td>
<td>3.222</td>
</tr>
</tbody>
</table>

We see that ARA is good as well for \(x>y\) as for \(x<y\) (on a not too large neighbourhood), while the other approximations, except \(CA(1,1)/(1,1)\), are not. The reason is still the same as in section 5a: \((1,1)/(1,0)\) fits the behaviour of \(F\) if \(x>y\) and \((1,1)/(0,1)\) fits the behaviour of \(F\) if \(y>x\). What's more: \(F(x,y)=F(y,x)\) and APA and ARA always conserve this property, while the other types of approximants do not.
c) Now consider \(F: \{(x, y) | y \geq -x - 1\} \subset \mathbb{R}^2 \rightarrow \mathbb{R} : (x, y) \rightarrow \sqrt{1 + x + y} = \)

\[
1 + \frac{x+y}{2} + \sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{k!} \frac{(x+y)^k}{2^k}
\]

where \((2k-3)!! = (2k-3)(2k-1) \ldots 5.3.1\)

We calculate some approximants:

| APA 1/1 | \[
1 + 0.75(x+y) \\
1 + 0.25(x+y)
\] |
|------------------|--|
| CA (1,1)/(1,1) | \[
1 + 0.75(x+y) - 0.1875xy \\
1 + 0.25(x+y) - 0.1875xy
\] |
| HJA (1,1)/(1,0) | \[
1 + 0.75x + 0.5y - 0.125xy \\
1 + 0.25x
\] |
| HJA (1,1)/(0,1) | \[
1 + 0.5x + 0.75y - 0.125xy \\
1 + 0.25y
\] |
| KMA 1/1 | \[
1 + 0.75(x+y) \\
1 + 0.25(x+y)
\] |
| LA (1,1)/(1,1) | \[
1 + 0.75(x+y) - 0.1875xy \\
1 + 0.25(x+y) - 0.1875xy
\] |
| LA (1,1)/(1,0) | \[
1 + 0.75x + 0.5y - 0.125xy \\
1 + 0.25x
\] |
| LA (1,1)/(0,1) | \[
1 + 0.5x + 0.75y - 0.125xy \\
1 + 0.25y
\] |
The border of the domain of F is nicely simulated by the poles of the

$$ \text{APA } k/1 : y = -x - \frac{2k+2}{2k-1} \text{ with } \lim_{k \to \infty} \frac{2k+2}{2k-1} = -1 $$

We also compare the function-values in different points:

<table>
<thead>
<tr>
<th></th>
<th>(x,y)=(2,-1)</th>
<th>(x,y)=(-0.4,-0.5)</th>
<th>(x,y)=(?,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1.4142</td>
<td>0.3162</td>
<td>1.0000</td>
</tr>
<tr>
<td>APA 1/1</td>
<td>1.4000</td>
<td>0.4194</td>
<td>1.0000</td>
</tr>
<tr>
<td>CA (1,1)/(1,1)</td>
<td>1.3077</td>
<td>0.3898</td>
<td>1.0000</td>
</tr>
<tr>
<td>HJA (1,1)/(1,0)</td>
<td>1.5000</td>
<td>0.4722</td>
<td>1.3333</td>
</tr>
<tr>
<td>HJA (1,1)/(0,1)</td>
<td>2.0000</td>
<td>0.4571</td>
<td>2.0000</td>
</tr>
</tbody>
</table>

When we compare the approximations that have the same "operator-fitting" ability (as defined earlier), we see that APA 1/1 and HVA 1/1 are much more accurate than the other types.
References

Sections 1-3:

(I) Cuyt Annie A.M.
Abstract Padé-approximants in Operator Theory.
Lecture Notes in Mathematics 765: Padé Appr. and its Appl.

(II) Cuyt Annie A.M.
On the properties of abstract rational (1-point) approximants

Sections 4-5:

(III) Chisholm J.S.R.
N-Variable Rational Approximants.
in : Saff E.B. and Varga R.S.
Padé and Rational approximations: theory and applications.

(IV) Hughes Jones R.
General Rational Approximants in N-Variables.

(V) Hughes Jones R. and Makinson G.J.
The generation of Chisholm Rational Polynomial Approximants to
Power series in Two Variables.

(VI) Karlsson J. and Wallin H.
Rational Approximation by an interpolation procedure in several
variables.
in : Saff E.B. and Varga R.S.
Padé and Rational approximations: theory and applications.

(VII) Lutterodt C.H.
Rational Approximants to Holomorphic Functions in n-Dimensions.
Journal of Mathematical Analysis and Applications 53, 1976,
pp. 89-98.

(VIII) Lutterodt C.H.
A two-dimensional analogue of Padé-approximant theory.

(IX) Rall L.B.
Computational Solution of Nonlinear Operator Equations.