A PROJECTION-PROPERTY FOR ABSTRACT RATIONAL (1-POINT) APPROXIMANTS

ANNIE A. M. CUYT

1. NOTATION AND DEFINITIONS

Consider the operator \(F: X \to Y \), analytic in \(0 \) [2, pp. 113] where \(X \supseteq \{0\} \) is a Banach space and \(Y \supseteq \{0, I\} \) is a commutative Banach algebra without nilpotent elements (0 is the unit for addition and \(I \) is the unit for multiplication). The scalar field is \(\mathbb{R} \) or \(\mathbb{C} \).

A nonlinear operator \(P: X \to Y \) such that \(P(x) = A_n x^n + \ldots + A_0 \) with \(A_i: X^i \to Y \) a symmetric and bounded \(i \)-linear operator \((i = 0, \ldots, n) \) is called an abstract polynomial [2, pp. 111]. The degree of \(P(x) \) is \(n \). The notation for the exact degree of \(P(x) \) is \(\partial P \) (the largest integer \(k \) with \(A_k x^k \neq 0 \)) and the notation for the order of \(P(x) \) is \(\delta P \) (the smallest integer \(k \) with \(A_k x^k \neq 0 \)).

Write \(D(F) := \{ x \in X | F(x) \text{ is regular in } Y, \text{i.e. there exists } y \in Y: F(x) \cdot y = I \} \). Since \(F \) is analytic in \(0 \), there exists \(r > 0 \) such that

\[
F(x) = \sum_{k=0}^{\infty} \frac{1}{k!} F^{(k)}(0) x^k \quad \text{for } \|x\| < r.
\]

We say that \(F(x) = O(x^j) \) for \(j \in \mathbb{N} \) if there exist \(J \in \mathbb{R}^+_0 \) and \(0 < r < 1 \) such that

\[
\|F(x)\| \leq J \|x\|^j.
\]

Definition 1.1. The couple of abstract polynomials

\[
(P(x), Q(x)) := (A_{nm+n}x^{nm+n} + \ldots + A_{mn}x^{mn}, B_{nm+n}x^{nm+m} + \ldots + B_{nm}x^{nm})
\]

is called a solution of the Padé approximation problem of order \((n, m)\) for \(F \) if the abstract power series

\[
(F \cdot Q - P)(x) =: O(x^{nm+n+m+1}).
\]
We define the operator \(\frac{1}{Q} \cdot D(Q) \rightarrow Y \) by \(\frac{1}{Q}(x) := [Q(x)]^{-1} \cdot \) the inverse element of \(Q(x) \) for the multiplication in \(Y \). We call the abstract rational operator \(\frac{1}{Q} \cdot P \), the quotient of two abstract polynomials, reducible if there exist abstract polynomials \(T, R \) and \(S \) such that \(P \equiv T \cdot R, \ Q \equiv T \cdot S \) and \(cT \ni 1 \).

Let us assume that the Banach space \(X \) and the Banach algebra \(Y \) are such that the irreducible form of an abstract rational operator is unique and that the abstract rational approximant of order \((n, m)\) for \(F \) (see Definition 1.2) is unique. The matter was discussed in [1].

Definition 1.2. Let \((P, Q)\) be a couple of abstract polynomials satisfying Definition 1.1, with \(D(P) \cup D(Q) \neq \emptyset \). The irreducible form \(\frac{1}{Q*} \cdot P* \) of \(\frac{1}{Q} \cdot P \) is called the \textit{abstract rational approximant of order \((n, m)\)} for \(F \) (abbreviated \((n, m)\)-ARA).

To prove our projection-property we shall need the condition numbered (1). Let \(T(x) := \sum_{k=0}^{n} T_k x^k \) be the abstract polynomial such that \(P := P* \cdot T \) and \(Q := Q* \cdot T \). Because \(D(P) \cup D(Q) \neq \emptyset \) we have \(D(T) \neq \emptyset \). If

\[
(1) \quad D(T_{\omega^t}) \neq \emptyset
\]

then we have \(t \geq 0 \) such that

\[
(F \cdot Q* \cdot P)_{\omega t} := O(x^{\tilde{c}^t P* + \tilde{c}^t Q* + \tilde{c}^t \tilde{c}^t + \cdots + \tilde{c}^t})
\]

\[
\tilde{c}^t P* \leq n \leq \tilde{c}^t P_{\omega t} + t
\]

\[
\tilde{c}^t Q* \leq m \leq \tilde{c}^t Q_{\omega t} + t
\]

where \(\tilde{c}^t P_{\omega t} := \tilde{c}^t P_{\omega t} \cdots \tilde{c}^t \tilde{c}^t \) and \(\tilde{c}^t Q_{\omega t} := \tilde{c}^t Q_{\omega t} \cdots \tilde{c}^t \tilde{c}^t \) [1, pp. 208].

2. **Projection-Property**

Consider Banach spaces \(X_i \) \((i = 1, \ldots, p)\). The space \(\prod_{i=1}^{p} X_i \) normed by one of the following Minkowski norms

\[
\|x^{[q]}_{i, q}^t := \left(\sum_{i=1}^{p} \|x^{[q]}_{i, q}^t \right)^{1/q}
\]
or
\[\|x\|_1 = \sum_{i=1}^{p} \|x_i\|_{(i)} \]
or
\[\|x\|_{\infty} = \max(\|x_1\|_{(1)}, \ldots, \|x_p\|_{(p)}) \]
where \(\|x_i\|_{(i)} \) is the norm of \(x_i \) in \(X_i \) and \(x = (x_1, \ldots, x_p) \), is also a Banach space.

We introduce the notations
\[x_{(j)} = (x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_p) \]
\[\hat{x}_{(j)} = (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p) . \]

Theorem 2.1. Let \(X = \prod_{i=1}^{p} X_i \) and \(\left(\frac{1}{Q_*} \cdot P_* \right)(x) \) be the \((n,m)\)-ARA for \(F \) and \(j \in \{1, \ldots, p\} \).

Let (1) be satisfied. If
\[S(\hat{x}_{(j)}) := Q_*(x_{(j)}) \]
\[R(\hat{x}_{(j)}) := P_*(x_{(j)}) \]
\[D(S) \cup D(R) \neq \emptyset \]
\[G_j(\hat{x}_{(j)}) := F(x_{(j)}) \]
then the irreducible form \(\left(\frac{1}{S_*} \cdot R_* \right)(\hat{x}_{(j)}) \) of \(\left(\frac{1}{S} \cdot R \right)(\hat{x}_{(j)}) \) is the \((n,m)\)-ARA for \(G_j \).

Proof. First we remark that if \(L : X^k \to Y \) is a bounded \(k \)-linear operator, then the operator \(M : \left(\prod_{i=1}^{p} X_i \right)^k \to Y \) defined by \(M\hat{x}_{(j)}^k = Lx_{(j)}^k \) is also bounded and \(k \)-linear.

Since \(\left(\frac{1}{Q_*} \cdot P_* \right)(x) \) is the \((n,m)\)-ARA for \(F \) and since (1) is satisfied, we have \(\epsilon > 0 \) such that
\[(F \cdot Q_* - P_*) (x) = O(x_{\epsilon_1}^{\epsilon_1 P_* + \epsilon_1 Q_* + \epsilon_0 Q_* + \epsilon_1 + 1}) \]
\[\partial_1 P_* < n \leq \partial_1 P_* + t \]
\[\partial_1 Q_* < m \leq \partial_1 Q_* + t . \]
Using one of the Minkowski norms \(\| \cdot \|_q \) (1 \(\leq q \leq \infty \)), \(\| x_{(j)} \|_q = \| (x_j, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_p) \|_q \) in \(\prod_{i=1}^{p} X_i \) equals \(\| \hat{x}_{(j)} \|_q = \| (x_j, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p) \|_q \).

Thus

\[
(F \cdot Q_\ast - P_\ast)(x_{(j)}) = (G_j \cdot S - R)(\hat{x}_{(j)}) = \mathcal{O}(\hat{x}_{(j)}^{(\partial P_\ast + \partial Q_\ast \cdot \partial Q_\ast \cdot t + t)})
\]

Now \(\partial P_\ast = \partial_0 Q_\ast + \partial_1 P_\ast \leq \partial P - \partial_0 T \leq nm + n \) [1, pp. 199], and \(\partial Q_\ast = \partial_0 Q_\ast + \partial_1 Q_\ast \leq \partial Q - \partial_0 T \leq nm + m \) [1, pp. 199]. So \(s = nm - \partial_0 Q_\ast + \min(n - \partial_1 P_\ast, m - \partial_1 Q_\ast) \geq 0 \).

Take a bounded \(s \)-linear operator \(D_s : \left(\prod_{i=1}^{p} X_i \right)^{s} \rightarrow Y \) with \(D(D_s) \cap [D(S) \cup D(R)] \neq \emptyset \).

Then

\[
\partial_0 (S \cdot D_s) \geq nm
\]

\[
\partial_0 (R \cdot D_s) \geq nm
\]

\[
\partial (S \cdot D_s) \leq \partial_0 Q_\ast + \partial_1 Q_\ast + nm - \partial_0 Q_\ast + \min(n - \partial_1 P_\ast, m - \partial_1 Q_\ast) \leq nm + m
\]

\[
\partial (R \cdot D_s) \leq \partial_0 Q_\ast + \partial_1 P_\ast + nm - \partial_0 Q_\ast + \min(n - \partial_1 P_\ast, m - \partial_1 Q_\ast) \leq nm + n
\]

\[
[(G_j \cdot S - R) \cdot D_s](\hat{x}_{(j)}) = \mathcal{O}(\hat{x}_{(j)}^{(\partial P_\ast + \partial_1 Q_\ast \cdot \partial Q_\ast \cdot nm + t \cdot \min(n - \partial_1 P_\ast, m - \partial_1 Q_\ast + 1)}) \leq \mathcal{O}(\hat{x}_{(j)}^{(nm + n + m + 1)})
\]

since \(m \leq \partial_1 Q_\ast \cdot t \) and \(n \leq \partial_1 P_\ast \cdot t \). The irreducible form of \(\frac{1}{S \cdot D_s} \) is the irreducible form of \(\frac{1}{S} \cdot R \).

We give a simple example to illustrate the theorem. Take

\[
G: \mathbb{R}^2 \rightarrow \mathbb{R}: (x, y) \rightarrow \frac{x \exp(x) \cdots y \exp(y)}{x \cdots y}
\]
The \((1,1)\)-ARA for \(G\) is
\[
\frac{x + y + 0.5(x^2 + 3xy + y^2)}{x + y - 0.5(x^2 + xy + y^2)}.
\]

For \(j = 1\): \(x = 0\)
\[G_1: \mathbb{R} \to \mathbb{R}: y \to \exp(y)\]
and for \(j = 2\): \(y = 0\)
\[G_2: \mathbb{R} \to \mathbb{R}: x \to \exp(x)\]

Indeed the \((1,1)\)-ARA for \(G_1\) equals \(\frac{1 + 0.5y}{1 - 0.5y}\) and for \(G_2\) equals \(\frac{1 + 0.5x}{1 - 0.5x}\).

The author is Aspirant Belgisch National Fonds voor Wetenschappelijk Onderzoek.

REFERENCES

ANNIE A. M. CUYT
University of Antwerp U.I.A.,
Department of Mathematics,
Universiteitsplein 1,
B - 2610 Wilrijk,
Belgium.

Received April 13, 1982.