EUROPE’S NEW HEPATITIS PROBLEM

Many get infected with hepatitis E, and a few get very sick. How can the virus be stopped?

Thomas Vanwolleghem, MD PhD
Hepatoloog UZA, Antwerpen
Onderzoeker, Erasmus MC
• HEV virology
• HEV (sero)-epidemiology

• HEV clinical presentation – treatment
 • HEV clinical cases- diagnosis

• HEV animal reservoirs- zoonotic risk
• HEV experimental models
Hepatitis E virus and the global disease burden

- Nonenveloped +sense single stranded RNA virus (27-34 nM)
- Family *Hepeviridae*, Genus *Orthohepevirus*
- 3 ORF

Aggarwall R, Hepatol 2011; Debing Y. J Hepatol 2016
Hepatitis E virus and the global disease burden

- 4 major genotypes:
 - 1+2 restricted to humans
 - 3+4 broad host range (zoonotic)

Hepatitis E virus is emerging

- **Seroprevalence:**
 - Overall ↓ until 2011 (Germany and the Netherlands)
 - ↑ young (largely unexposed) adults

- ↑ HEV RNA positive blood donations in the Netherlands
 - Oct 2012 – Mar 2013 1:2742
 - Apr 2014 – Sep 2014 1:611

HEV Transmission

Transmission mainly via fecal-oral route
Sero-epidemiological surveys in Europe/US

Acute Fulminant HEV

US: zeldzaam (0,4%), totale ALF cohorte n=681
Meer frequent in HEV gt 1 infection

Acute on Chronic LF/ Decompensated LF

Prospective UK/French series: 3,2%
8 yr Retrospective Single Center (Toulouse): n=7 (age >65 yrs), alcohol+

Acute alcoholic hepatitis: 3,6% (total, n=84)

Chronic liver disease: 21% HEV IgG+

DILI: 3% HEV IgM+ (total n= 318)
Scheme: HEV Zoonosis

- HEV virology
- HEV (sero)-epidemiology
- HEV clinical presentation – treatment
 - HEV clinical cases- diagnosis
- HEV animal reservoirs- zoonosis
- HEV experimental models
Classical acute HEV (gt 1/2/3/4)

Chronic HEV genotype 3

Chronicity rate = 65.9% in SOT recipients (n=65/85)

HIV
SOT
BMTx
Cancer chemotherapy

“Immunocompetent”: immune suppressive R/undefined CD4 defect

-> Rapid fibrosis progression

NEJM 2012, Blood 2013;122:1079
GASTROENTEROLOGY 2011;140:1481 ; Hepatology 2014,60 (3).
Extrahepatic manifestations

Neurological: (~100 cases)
Guillain-Barre
Brachial neuritis
Meningo-encephalitis

Kidney disease:
glomerulonephritis
± cryoglobulinemia

Replication vs HEV RNA Detection?
Animal models
Seldom HEV negative strand PCR (Placenta)

Treatment for chronic HEV

Reduction of immune suppression \rightarrow successfull in 32.1%

<table>
<thead>
<tr>
<th>Drug</th>
<th>In vitro effect</th>
<th>In vivo effect</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribavirin</td>
<td>Inhibition of HEV replication</td>
<td>HEV clearance in chronic hepatitis E; occasional cases of treatment failure</td>
<td>Intracellular GTP depletion through inosine 5'-monophosphate dehydrogenase inhibition</td>
</tr>
<tr>
<td>PegIFNa</td>
<td>Inhibition of HEV replication</td>
<td>HEV clearance in chronic hepatitis E</td>
<td>Immune activation</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td>Inhibition of HEV replication</td>
<td>Unknown</td>
<td>Nucleotide analog; inhibition of the viral RNA-dependent RNA polymerase</td>
</tr>
<tr>
<td>Mycophenolic acid (including prodrug mycophenolate mofetil)</td>
<td>Inhibition of HEV replication</td>
<td>Unclear, possibly associated with HEV clearance in chronic hepatitis E</td>
<td>Intracellular GTP depletion through inosine 5'-monophosphate dehydrogenase inhibition; immune suppression</td>
</tr>
<tr>
<td>mTOR inhibitors (rapamycin, everolimus)</td>
<td>Stimulation of HEV replication</td>
<td>Higher HEV RNA levels in patients with chronic hepatitis E on mTOR inhibitors</td>
<td>Inhibition of an eIF4E binding protein 1-dependent antiviral signaling pathway downstream of mTOR</td>
</tr>
<tr>
<td>Calcineurin inhibitors (cyclosporin A, tacrolimus)</td>
<td>Stimulation of HEV replication</td>
<td>Unknown; tacrolimus use associated with increased risk of viral persistence</td>
<td>Inhibition of cyclophilin A and B</td>
</tr>
</tbody>
</table>

Treatment PegIFN?

3-month course
LTX n=3
135 µg/week
2 clear
1 relapse

Leukemia n=1
PegIFNα2b 1 µg/kg BW/week
2 rapid response
2 slow response

Not in KTX

Ann Int Med 2010
RBV for chronic HEV

Retrospective series (n=59)

- Median 3 months
- Median dose: 600 mg per day (upto 1200mg), ~ 8.1mg/kg
- EOT= 95%
- “SVR24 wks” =78%

~ weight based RBV (12 mg/kg): 1000 mg vs 1200 mg (anemia!)

Prediction of response: monitor HEV RNA in stool

- + @ 1 month in 100% of relapsers
- + @ 3 months in 66% of relapsers vs 0% of responders

UZA case 1: HTx recipient; feb 2014

<table>
<thead>
<tr>
<th>HEV IgG -</th>
<th>HEV IgG +</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV IgM -</td>
<td>HEV IgM +</td>
</tr>
</tbody>
</table>

ALT (U/L)

- **Baseline**: 20
- **After meal**: 180
- **2 Mar 2014**: 2.04E+06
- **3 Mar 2014**: 2.89E+06
- **4 Mar 2014**: 2.6E+06
- **TREATMENT START**: 14.8
- **6 Mar 2014**: 14
- **9 Mar 2014**: 10.1
- **12 Mar 2014**: 13.9
- **13 Mar 2014**: 12.6

HEV RNA Quantitative (IU/mL)

- **10 Mar 2014**: 1.02E+06
- **11 Mar 2014**: (negative)
- **12 Mar 2014**: (negative)

Hb (mg/dL)

- **2 Mar 2014**: 14.8
- **3 Mar 2014**: 14
- **4 Mar 2014**: 10.1
- **5 Mar 2014**: 13.9
- **6 Mar 2014**: 12.6

Mycophenolate (mg)

- **10 Mar 2014**: 0
- **11 Mar 2014**: 0
- **12 Mar 2014**: 0

Methylprednisolone (mg)

- **10 Mar 2014**: 0
- **11 Mar 2014**: 0
- **12 Mar 2014**: 0

Tacrolimus (mg)

- **10 Mar 2014**: 10
- **11 Mar 2014**: 10
- **12 Mar 2014**: 10
UZA case 2: HTx + KTx recipient; 2016

HEV PCR (WIV) + : 1/7 ; 23/8 en 26/9

HEV serology : IgG+ en IgM+ 1/7

Start RBV on 10/10

- HEV RNA 1,30 E6 IU/mL (2/11) < 4,76 E7 IU/mL (7/10)
- RBV monitoring (Nijmegen): 1.01 mg/L. (2-3 mg/L)
- RBV monitoring (Nijmegen): 1.07 mg/L

HEV infectie april-juni ’16

HEV PCR-Junii 2015

Start RBV
HEV PCR (WIV) + : 11/8 en 12/10
HEV serology : IgG- en IgM+ 11/8

HEV RNA 5,32 E+6 IU/ml (12/10)

HEV infectie mei-juli ’16
HEV PCR- Jan 2016
Immune compromised patient with consistent ALT rise >1 month:

- HEV PCR (qualitative) (WIV)
 → Voorgedefinieerde DOTS test
 (ism Veerle Matheeussen, Microbiologie UZA)

- HEV serology: (WIV Recomline --> Wantai)
 low NPV, to be combined with HEV PCR
Voedingsadviezen voor transplant pt

Merendeel leverworsten HEV RNA+
Cfr Figatellu Corsica/Zuid-Frankrijk
Scheme: HEV Zoonosis

- HEV virology
- HEV (sero)-epidemiology

- HEV clinical presentation – treatment
 - HEV clinical cases - diagnosis

- HEV animal reservoirs - zoonotic risk
- HEV experimental models
Zoonotic Risk? Animal Reservoirs?

<table>
<thead>
<tr>
<th>Natural animal host</th>
<th>Classification (genus/species, genotypes [gt])</th>
<th>Experimental hosts for cross-species infection</th>
<th>Zoonotic infection in humans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Orthohepevirus A gt 1, 2, 3, 4</td>
<td>Non-human primates, pigs (gt 3, 4), rabbits (gt 1, 4), lambs (gt 1), Wistar rats (gt 1)</td>
<td>Yes</td>
</tr>
<tr>
<td>Domestic swine</td>
<td>gt 3, 4</td>
<td>Non-human primates, rabbits, Mongolian gerbils (gt 4), Balb/C mice (gt 4)</td>
<td>Yes (gt 3, 4), likely (gt 5, 6)</td>
</tr>
<tr>
<td>Wild boar</td>
<td>gt 3, 4, 5, 6</td>
<td></td>
<td>Yes (gt 3, 4), likely (gt 5, 6)</td>
</tr>
<tr>
<td>Deer</td>
<td>gt 3</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Rabbit</td>
<td>gt 3</td>
<td>Pigs</td>
<td>Likely</td>
</tr>
<tr>
<td>Mongoose</td>
<td>gt 3</td>
<td></td>
<td>Likely</td>
</tr>
<tr>
<td>Camel</td>
<td>gt 7</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Moose</td>
<td>unknown</td>
<td></td>
<td>Not known</td>
</tr>
<tr>
<td>Chicken</td>
<td>Avian HEV gt 1, 2, 3</td>
<td>Turkeys</td>
<td>No</td>
</tr>
<tr>
<td>Orthohepevirus B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td></td>
<td></td>
<td>Unlikely</td>
</tr>
<tr>
<td>Ferret</td>
<td></td>
<td></td>
<td>Unlikely</td>
</tr>
<tr>
<td>Greater bandicoot</td>
<td></td>
<td></td>
<td>unlikely</td>
</tr>
<tr>
<td>Asian musk shrew</td>
<td></td>
<td></td>
<td>unlikely</td>
</tr>
<tr>
<td>Mink</td>
<td></td>
<td></td>
<td>unlikely</td>
</tr>
<tr>
<td>Bat</td>
<td>Orthohepevirus D</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Cutthroat trout</td>
<td>Piscihepevirus</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>
CDC study
N= 4936 dieren (35 genera)

457 HEV IgG+:
Bizon (4,3%), Runderen (15%), Honden (0,9%), Ratten (0,6%)
Varkens (41,2%), Wilde zwijnen (2,9%)

Alleen hoge titers bij varkens (HEV gt3)
Zoonotic Risks in Belgium: “Pig Belt”

- Overall 70% of fatteners HEV RNA+
- serum HEV RNA- within 1 month, but ongoing fecal secretion
- infection of newborn pigs

→ True pig reservoir

Belgium (2010): slaughterhouse
→ 5/23 farms HEV RNA+
→ 8/115 (7%) HEV RNA+

Number of sows by region (2013) - Source: Eurostat

BMC Res Notes, 2012. PLOS one 2011
Zoonotic Risks in Belgium: … and Wildlife

- Wild Boar: 34% HEV IgG+
- Deer: 1-3% HEV IgG+

Wild boar density shot per region (2009-2013)

Transboundary and Emerging Diseases. 2015
HEV experimental models

- In vitro, infection of various cell lines

- In vivo, acute HEV infection in pigs, ferrets, chimpanzee, and rhesus monkeys

- Recently, in vivo, chronic HEV infection in human-liver chimeric mice
 - uPA+/+NOG (van de Garde et al. JVI 2016)
 - uPA+/+SCID/beige (Alweiss et al. J Hepatol 2016)
 - uPA+/+SCID (Sayed et al. Gut 2016)
Principle of human liver chimeras

- Genetic defined liver disease
 - Overexpression of uPA induces ER stress related apoptosis
- Immune deficient UPA+/+NOG

HEV gt3 infection of human-liver chimeric mice

- Infection with HEV gt3 derived from feces and liver but not from plasma/serum
Conclusion: HEV

- HEV gt 3 emerging in Europe
- Acute, mostly asymptomatic in immunocompetent
- Possible chronic in immunocompromised
- Viral hepatitis serology may be negative --> PCR
- Treat with RBV
- Uncooked pork meat, seafood, leverworst/paté
 - In Belgium: Deer safer than Wild Boar?
 - Many issues on food safety remaining

- Preclinical models for infectivity and antiviral studies
Acknowledgements

Division of Viral Hepatitis, CDC, USA

Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, USA

Erasmus MC Fellowship 2011
Erasmus MC Pilot Grant 2015

Stichting tegen Kanker
Het congres

Als laatste presenteerde David de uitkomsten van zijn onderzoek naar aandachtscurves van congresgangers.

thomas.vanwolleghem@uza.be
tel 3853
Excretion of Infectious Hepatitis E Virus Into Milk in Cows Imposes High Risks of Zoonosis

HEV gt 4 RNA in Feces (37.1%), bloed en melk (Yunnan, China)

Transmissie nr Rhesus monkey (gavage):
Pasteurisatie (30' 62°C of 72°C): onvoldoende
Koken (3' 100°C) = sterilizatie
Rural China: Mixed Farming