Start-up strategy for the nitrite pathway

Jan Dries & Thomas Dobbeleers

N-cycle

nitrification

\[
\begin{align*}
\text{NH}_4^+ & \xrightarrow{\text{25\% O}_2} \text{NO}_2^- \\
\text{NO}_3^- & \xrightarrow{\text{40\% BOD}} \text{NO}_2^- \\
\text{NO}_2^- & \xrightarrow{\text{60\% BOD}} \text{N}_2 (g)
\end{align*}
\]

denitrification

75\% O_2
Objective

Case: slaughterhouse wastewater

- **pretreatment:** DAF
- **biology:** step-feed SBR

effluent

- **COD:** 1200 ± 470 mg/L
- **NH_4^-:** 165 ± 60 mg/L

COD/N: 7 ± 2
Challenge = to get rid of the NOB

1. Starting from sludge

low DO, high pH, high T, aeration control, selective inhibitors...
2. Starting from wastewater

\[N\text{-substrate} = NH_4^-N \]

Aeration phase length control + step-feed regime

Starting from wastewater

\[> 80\% \text{ COD} \text{ removal in} < 18 \text{ days} \]
\[> 80\% \text{ N} \text{ removal in} < 60 \text{ days} \]
\[\text{Degree of nitritation} (\%ND) > 90\% \]
3. Strategy to keep the nitrite pathway

![Graph showing nitrite concentration over time.](image)

Aeration phase length control in a step-feed SBR

Conclusions & perspectives

Novel nitritation start-up strategy

- starting from wastewater only (no inoculum)
- in combination with aeration phase length control
- rapid & stable...

- ... but what about N$_2$O?
Pilot-scale demonstration