An IAQ-index for cultural heritage applications
IAQ assessment

How to make a judgement?
Intuition

Expertise

Experience
Intuitive → rational
(IPI, dew point calculator with preservation evaluation - eClimateNotebook)

(M. Martens, TU Eindhoven, specific risk plot)
EPA Air Quality Index (AQI) - Krakow

<table>
<thead>
<tr>
<th>Air Quality Index (AQI) Values</th>
<th>Levels of Health Concern</th>
<th>Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the AQI is in this range:</td>
<td>...air quality conditions are:</td>
<td>...as symbolized by this color:</td>
</tr>
<tr>
<td>0 to 50</td>
<td>Good</td>
<td>Green</td>
</tr>
<tr>
<td>51 to 100</td>
<td>Moderate</td>
<td>Yellow</td>
</tr>
<tr>
<td>101 to 150</td>
<td>Unhealthy for Sensitive Groups</td>
<td>Orange</td>
</tr>
<tr>
<td>151 to 200</td>
<td>Unhealthy</td>
<td>Red</td>
</tr>
<tr>
<td>201 to 300</td>
<td>Very Unhealthy</td>
<td>Purple</td>
</tr>
<tr>
<td>301 to 500</td>
<td>Hazardous</td>
<td>Maroon</td>
</tr>
</tbody>
</table>

O₃, SO₂, NO₂, CO, PM
IAQ-algorithm for heritage applications

- Key risk indicators
- Heritage-related thresholds
- Material-dependency
Key risk indicators (KRI)
KRI quantification: thresholds
Material dependency
Material dependency
Material selection

<table>
<thead>
<tr>
<th>Material/Object Type</th>
<th>Subclasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>General collection *</td>
<td>Wood</td>
</tr>
<tr>
<td>Paintings</td>
<td>Cotton and rag paper</td>
</tr>
<tr>
<td>Paper</td>
<td>Restrained</td>
</tr>
<tr>
<td>Wood</td>
<td>Vegetable fibers</td>
</tr>
<tr>
<td>Textile</td>
<td>Restricted silk</td>
</tr>
<tr>
<td>Metal</td>
<td>Silver</td>
</tr>
<tr>
<td>Leather and parchment</td>
<td>Restrained</td>
</tr>
<tr>
<td>Glass</td>
<td>General</td>
</tr>
<tr>
<td>Ceramic</td>
<td>Terracotta/earthenware</td>
</tr>
<tr>
<td>Stone</td>
<td>Limestone</td>
</tr>
<tr>
<td>Ivory/ bone/ antler/ horn</td>
<td>Albumen</td>
</tr>
<tr>
<td>Feather/ insects/ stuffed animals</td>
<td></td>
</tr>
<tr>
<td>Photographs</td>
<td></td>
</tr>
<tr>
<td>Plastics</td>
<td></td>
</tr>
</tbody>
</table>

* The material/object type ‘general collection’ offers an option that is material unspecific as a generic approach. If a sensitive object is present in the collection, one should opt to continue with this specific material.
Material & KRI ranking

Key risk indicators (KRI)
Risk profile

Paintings

- Wood
- Canvas
- Copper

- Too high RH
- Too high dust
- Too high reduced sulfur
- Too high organic gases
- Too high oxidizing gases
- Too high UV
- Too high illuminance
- Too high T
- Too low RH
- Too low T
- Too large RH fluctuations
- Too large T fluctuations
Algorithm

Data matrix

<table>
<thead>
<tr>
<th>Parameter, X_1</th>
<th>Parameter, X_2</th>
<th>Parameter, X_3</th>
<th>Parameter, X_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data point 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data point 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data point 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Algorithm

1. Data matrix

<table>
<thead>
<tr>
<th>Parameter, X_1</th>
<th>Parameter, X_2</th>
<th>Parameter, X_3</th>
<th>Parameter, X_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data point 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data point 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data point 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Risk, R_i

- Parameter X_1
- Parameter X_2
- Parameter X_3
- Parameter X_4
Algorithm

1. Data matrix
 - Parameter, X_1
 - Parameter, X_2
 - Parameter, X_3
 - Parameter, X_4

2. Risk, R_1, R_2, R_3, R_4
 - Parameter X_1
 - Parameter X_2
 - Parameter X_3
 - Parameter X_4

3. $R_{\text{max}} = \max \{ w_1 R_1, w_2 R_2, w_3 R_3 \}$

4. $R_{\text{max}} = \max \{ w_1 R_1, w_2 R_2, w_3 R_3 \}$
Algorithm

1. Data matrix
 - Parameter, X_1
 - Parameter, X_2
 - Parameter, X_3
 - Parameter, X_4

2. Risk, R_1
 - Parameter X_1
 - $\times w_1$

3. Risk, R_2
 - Parameter X_2
 - $\times w_2$

4. Risk, R_3
 - Parameter X_3
 - $\times w_3$

5. Risk, R_4
 - Parameter X_4
 - $\times w_4$

$R_{\text{max}} = \max \{w_1 R_1, w_2 R_2, w_3 R_3\}$

$\text{IAQ}_{\text{general}} = 1 - R_{\text{max}}$
Algorithm

1. Data matrix
 - Parameter, X_1
 - Parameter, X_2
 - Parameter, X_3
 - Parameter, X_4

2. Risk, R_1
 - Parameter X_1
 - $\times w_1$

3. Risk, R_2
 - Parameter X_2
 - $\times w_2$

4. Risk, R_3
 - Parameter X_3
 - $\times w_3$

5. Risk, R_4
 - Parameter X_4
 - $\times w_4$

6. $R_{\text{max}} = \max \{w_1 R_1, w_2 R_2, w_3 R_3\}$

7. $\text{IAQ}_{\text{general}} = 1 - R_{\text{max}}$

8. IAQ-index
 - 23/07/2017 to 23/10/2017
<table>
<thead>
<tr>
<th>Time stamp</th>
<th>Temperature (°C)</th>
<th>RH (%)</th>
<th>Lux_AV (lux)</th>
<th>UV (mW.cm²)</th>
<th>PM 2.5 (µg/m³)</th>
<th>NO2 (ppb)</th>
<th>O3 (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-01-01 00:00...</td>
<td>8.047098</td>
<td>83.093182</td>
<td>225.46298</td>
<td>2.001670</td>
<td>1.82585083</td>
<td>85.45235</td>
<td>4.2102132007</td>
</tr>
<tr>
<td>2018-01-01 00:01...</td>
<td>8.06098</td>
<td>83.203152</td>
<td>230.35712</td>
<td>2.114777</td>
<td>1.7024721077</td>
<td>85.45235</td>
<td>4.3002132007</td>
</tr>
<tr>
<td>2018-01-01 00:02...</td>
<td>8.110983</td>
<td>83.042528</td>
<td>236.97306060</td>
<td>2.131478</td>
<td>1.8140377012</td>
<td>85.45235</td>
<td>4.37161773135</td>
</tr>
<tr>
<td>2018-01-01 00:03...</td>
<td>8.127358</td>
<td>84.325124</td>
<td>242.12703</td>
<td>2.1468113250</td>
<td>2.3812455144</td>
<td>0.2881015970</td>
<td>4.043060000039</td>
</tr>
<tr>
<td>2018-01-01 00:04...</td>
<td>8.116352</td>
<td>83.002072</td>
<td>236.21000000</td>
<td>2.1526986</td>
<td>2.5792142480</td>
<td>0.8801042034</td>
<td>8.112260052244</td>
</tr>
<tr>
<td>2018-01-01 00:05...</td>
<td>8.116352</td>
<td>83.480976</td>
<td>235.14080060</td>
<td>2.1547481066</td>
<td>2.5530219389</td>
<td>0.4612748815</td>
<td>8.512225417742</td>
</tr>
<tr>
<td>2018-01-01 00:06...</td>
<td>8.09839</td>
<td>83.400872</td>
<td>231.78814571</td>
<td>2.1546077142</td>
<td>2.301382672087</td>
<td>0.3704062782</td>
<td>7.16003060015</td>
</tr>
<tr>
<td>2018-01-01 00:07...</td>
<td>8.091614</td>
<td>83.16188</td>
<td>210.88090857</td>
<td>2.104813</td>
<td>2.3168231301</td>
<td>1.2078662502</td>
<td>7.805863466000</td>
</tr>
<tr>
<td>2018-01-01 00:08...</td>
<td>8.076029</td>
<td>82.067092</td>
<td>200.65435090</td>
<td>2.1060171428</td>
<td>2.7670031770</td>
<td>2.77520006035</td>
<td>8.757865150547</td>
</tr>
<tr>
<td>2018-01-01 00:09...</td>
<td>8.060054</td>
<td>83.100384</td>
<td>101.110142357</td>
<td>2.1714401428</td>
<td>2.3328242742</td>
<td>1.5202000630</td>
<td>8.73722716205</td>
</tr>
<tr>
<td>2018-01-01 00:10...</td>
<td>8.074606</td>
<td>82.073004</td>
<td>178.32502071</td>
<td>2.1720914257</td>
<td>2.3385056818</td>
<td>0.3941337407</td>
<td>10.370090500402</td>
</tr>
<tr>
<td>2018-01-01 00:11...</td>
<td>8.074606</td>
<td>82.7120</td>
<td>141.358220571</td>
<td>2.1782132871</td>
<td>2.2837206424</td>
<td>3.02938468018</td>
<td>12.2337757335</td>
</tr>
<tr>
<td>2018-01-01 00:12...</td>
<td>8.080295</td>
<td>82.266152</td>
<td>110.3400002357</td>
<td>2.1000085271</td>
<td>2.2104004024</td>
<td>0.3384207136</td>
<td>10.2082004003</td>
</tr>
<tr>
<td>2018-01-01 00:13...</td>
<td>8.04068</td>
<td>81.750824</td>
<td>75.738901371</td>
<td>2.0203888571</td>
<td>2.0082530140</td>
<td>2.0400005000</td>
<td>11.04097140976</td>
</tr>
<tr>
<td>2018-01-01 00:14...</td>
<td>8.058785</td>
<td>81.945004</td>
<td>54.54262441285</td>
<td>2.2242775714</td>
<td>1.9645711064</td>
<td>0.9754128009</td>
<td>11.0124345816</td>
</tr>
<tr>
<td>2018-01-01 00:15...</td>
<td>8.042824</td>
<td>81.801884</td>
<td>20.0560721428</td>
<td>2.0201838571</td>
<td>2.01437507900</td>
<td>2.2128777072</td>
<td>12.20800004513</td>
</tr>
<tr>
<td>2018-01-01 00:16...</td>
<td>8.0014</td>
<td>81.81212</td>
<td>14.1853002857</td>
<td>2.2888036514</td>
<td>1.9744301402</td>
<td>0.76106530701</td>
<td>12.4413061830</td>
</tr>
<tr>
<td>2018-01-01 00:17...</td>
<td>8.076032</td>
<td>81.510112</td>
<td>33.135247142</td>
<td>2.3153507142</td>
<td>1.0302285328</td>
<td>0.30203430018</td>
<td>11.8210796102</td>
</tr>
<tr>
<td>2018-01-01 00:18...</td>
<td>8.072354</td>
<td>81.835848</td>
<td>73.3073528571</td>
<td>2.341214</td>
<td>1.0811042012</td>
<td>0.121000478078</td>
<td>12.02393030200</td>
</tr>
</tbody>
</table>
Conclusion

- IAQ-algorithm
- ↑ environmental parameters
- Practical tool with intuitive visualization
- Reproducible & quantitative IAQ-judgements