Review of HPV\cervical cancer Screening and treatment challenges in Eastern Europe and Central Asia:
Russia, Georgia, Belorussia, Ukraine, Moldova, Armenia, Azerbaijan, Uzbekistan, Kazakhstan, Kirgizstan.

SVETLANA ROGOVSKAYA, MD, PHD, PRESIDENT RAGIN
NADEZDA CHERNOVA, MD, PHD, VICE-PRESIDENT RAGIN

RAGIN
(RUSSIAN ASSOCIATION FOR GENITAL INFECTIONS AND NEOPLASIA)
nothing to declare
Basic facts

• No system of epidemiological observation of HPV

• State statistics exists for anogenital warts and malignancy (somewhere CIS). No correlation with HPV. The cancer register is mainly based on oncological institutions data

• Data of HPV types are based on selective researches with various methodology and tools.

• Impact of HPV -46.7% are accounted for anogenital warts, cervical cancer - 19.5%, anal cancer - 15.6%, vulvar cancer - 2.3%, vaginal cancer - 0.5%, CIN- 15.5% (Chernova, 2018)

• System should consider psychosocial damage of patient with positive test results, additional clinical visits, overtreatment, risk of lost to follow up, etc.
AGW – the interdisciplinary problem

<table>
<thead>
<tr>
<th>Country</th>
<th>Incidence anogenital warts</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>18.8 cases per 100,000 population</td>
<td>Clinical guidelines, RODVK 2019</td>
</tr>
<tr>
<td></td>
<td>It is noted less intensive decrease in the incidence of anogenital venereal warts - 38.2%</td>
<td>Briko N.I., Kaprin A.D 2019; 21 (1): 45–50. DOI: 10.26442/18151434.2019.190199</td>
</tr>
<tr>
<td>Belorussia</td>
<td>30 cases per 100,000 population (10.4%)</td>
<td>A.Navrotsky, M.Romashko et al, 2015</td>
</tr>
</tbody>
</table>

Georgia, Ukraine, Moldova, Armenia, Azerbaijan, Uzbekistan, Kazakhstan, Kirgizstan - official statistics are not available

RAGIN, 2020
Tests applied in screening and clinic

Pap tests
- LBC
- Papanicolau test (wet smear)
- Pappenheim test (dry smear)

HPV tests
More than 90 tests are licensed
HR-HPV DNA tests, rare
HPV DNA -PCR Real-time (AmpliSens,Russia, Anyplex™, domestic tests) mainly
Hybrid Capture 2 HPV DNA-Test, expensive
HR-HPV E6/E7 mRNA tests, rare
The burden of HPV infection in women with normal cytology by country (2015-2020)

<table>
<thead>
<tr>
<th>Country</th>
<th>Prevalence range of HPV (%)</th>
<th>Population description</th>
<th>HPV test, Genotyping</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>20.7%</td>
<td>General population</td>
<td>RT-PCR, AmpliSens</td>
<td>Ministry of Health Rosstat, 2016</td>
</tr>
<tr>
<td>Ukraine</td>
<td>40%</td>
<td>General population</td>
<td>RT-PCR, Anyplex™</td>
<td>Suhanova, 2016</td>
</tr>
<tr>
<td>Moldova</td>
<td>15-20 %</td>
<td>General population</td>
<td>RT-PCR</td>
<td>Jarynowski, 2019</td>
</tr>
<tr>
<td>Armenia</td>
<td>no data available</td>
<td>no data available</td>
<td>no data available</td>
<td>no data available</td>
</tr>
<tr>
<td>Georgia</td>
<td>11.5%</td>
<td>General population</td>
<td>no data available</td>
<td>ICO/IARC Information Centre on HPV and Cancer</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>8.7%</td>
<td>General population</td>
<td>RT-PCR, AmpliSens</td>
<td>Gadzhieva, 2016</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>18.1%-19.4%</td>
<td>General population</td>
<td>RT-PCR, AmpliSens</td>
<td>Rackmanova, 2020</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>25%-55.8%</td>
<td>General population Gynecological patients</td>
<td>RT-PCR, AmpliSens</td>
<td>Bekmukhambetov et al, 2016 Balmagambetova et al, 2019 Junerbayeva et al., 2015 Niyazmetova et al., 2017</td>
</tr>
<tr>
<td>Kirgizstan</td>
<td>no data available</td>
<td>no data available</td>
<td>no data available</td>
<td>no data available</td>
</tr>
</tbody>
</table>
Comparison of the HPV oncogenic types among women with normal cytology and cervical cancer in RF, Belarus, Ukraine (Modified from ICO/IARC Information Centre on HPV and Cancer, 2019)

Normal cytology

- Russia: HPV-16 (7.7%), HPV-39 (4%), HPV-31 (1.8%)
- Belarusia: HPV-31 (1.9%), HPV-39 (0.6%)
- Ukraine: HPV-16 (7.1%)

Cervical cancer

- Russia: HPV-16 (64.6%), HPV-31 (3.8%)
- Belarusia: HPV-31 (65.4%)
- Ukraine: HPV-16 (92%)

Prevalence (%) for each HPV type is shown in the bar charts.
New cases cervical cancer (% from all cancers)

- Armenia: 2.7%
- Russian Federation: 3.3%
- Uzbekistan: 6.4%
- Kyrgyzstan: 9.2%
- Kazakhstan: 5.1%
- Ukraine: 3.4%
- Belarus: 2.3%
- Republic of Moldova: 4.2%
- Georgia: 3.2%

Modified The Global Cancer Observatory May, 2019
Epidemiology of cervical cancer in Central and Eastern Europa

Age-standardized incidence rates (World) in 2018, cervix uteri, females, all ages

1. Average number of cases:
- Belarus, Republic of Moldova, Russian Federation, Ukraine, females, all ages

The Global Cancer Observatory - All Rights Reserved - May, 2019

RAGIN, 2020
Epidemiology of cervical cancer in Western Asia

Estimated age-standardized incidence rates (World) in 2018, cervix uteri, females, all ages, Western Asia

- Georgia
- Armenia
- Azerbaijan
- United Arab Emirates
- Oman
- Lebanon
- Cyprus
- Israel
- Turkey
- Qatar

Average number of cases Armenia, Georgia, Azerbaijan, females, all ages

- Breast
- Colorectum
- Corpus uteri
- Stomach
- Cervix uteri

RAGIN, 2020

1The Global Cancer Observatory - All Rights Reserved - May, 2019
2The Global Cancer Observatory - All Rights Reserved - May, 2019
Epidemiology of cervical cancer in South-Central Asia

Estimated age-standardized incidence rates (World) in 2018, cervix uteri, females, all ages, South-Central Asia

- Maldives
- Nepal
- Kyrgyzstan
- Kazakhstan
- India
- Bhutan
- Turkmenistan
- Bangladesh
- Uzbekistan
- Sri Lanka

Average number of cases Uzbekistan, Kazakhstan, Kirgizstan, females, all ages

- Breast
- Cervix uteri
- Colorectum
- Stomach
- Corpus uteri

1. The Global Cancer Observatory - All Rights Reserved - May, 2019
2. The Global Cancer Observatory - All Rights Reserved - May, 2019
Cervical cancer incidence (2018)

ANNUAL NUMBER OF NEW CANCER CASES

- Russia: 18,164
- Belorussia: 979
- Ukraine: 5,733
- Georgia: 297
- Moldova: 639
- Armenia: 196
- Azerbaijan: 397
- Kazakhstan: 1,729
- Kirgizstan: 601
- Uzbekistan: 1,608
- Kazakhstan: 1,729
- Kirgizstan: 601

Crude incidence rate*

- Russia: 30.4%
- Belorussia: 24.2%
- Ukraine: 19.4%
- Georgia: 14.5%
- Moldova: 12.6%
- Armenia: 9.9%
- Azerbaijan: 8.0%
- Uzbekistan: 18.2%
- Kirgizstan: 19.4%

*Rates per 100,000 women per year

Modified The Global Cancer Observatory May, 2019.
Estimated number of prevalent cases (5-year) as a proportion in 2018, cervix uteri, all ages

Proportions per 100 000

- ≥ 62.2
- 45.8-62.2
- 32.7-45.8
- 22.0-32.7
- < 22.0

Not applicable
No data

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate international borders for which there may not yet be full agreement.

Data source: GLOBOCAN 2018
Graph production: IARC
(http://gco.iarc.fr/today)
World Health Organization
<table>
<thead>
<tr>
<th>Countries</th>
<th>*Prevalence HPV</th>
<th>**Rates cervical cancer per 100,000</th>
<th>Free HPV tests* **</th>
<th>free PAP-test * **</th>
<th>National HPV Immunization programme* **</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belorussia</td>
<td>30%</td>
<td>13.3/3.8 16,3/6,1</td>
<td>NO</td>
<td>Yes</td>
<td>NO</td>
<td>Globocan: Cancer incidence 2018 ICO/IARC HPV Information Centre 2019 Personal communication Mavrichev S.A. 2018</td>
</tr>
<tr>
<td>Ukraine</td>
<td>40% (n=10 000)</td>
<td>17.0/6.6 14.7/5.1</td>
<td>NO</td>
<td>Yes</td>
<td>NO</td>
<td>ICO/IARC HPV Information Centre 2019 Kolesnik O.O.2018 Bulletin of the national stationery-register of Ukraine no. 21 2020 Personal communication T Tatarchuk</td>
</tr>
<tr>
<td>Moldova</td>
<td>43.2%</td>
<td>21.4/7.9 16.2 \ 8.4</td>
<td>NO</td>
<td>Yes</td>
<td>NO Partial program</td>
<td>ICO/IARC HPV Information Centre 2019 Andrzej Jarynowski 2019 do: https://doi.org/10.1101/19009886 Personal communication Vetrichyan Nadezhda 2018 Ulyana Tabulka 2018</td>
</tr>
<tr>
<td>Armenia</td>
<td>30%</td>
<td>8.4/5.6</td>
<td>NO</td>
<td>Yes</td>
<td>NO</td>
<td>ICO/IARC HPV Information Centre 2019 Kujoyan L. S. 2019 www.nih.am 2019 Personal communication L Kujoyan</td>
</tr>
<tr>
<td>Georgia</td>
<td>9.8/5.5</td>
<td></td>
<td>NO</td>
<td>Yes</td>
<td>NO</td>
<td>ICO/IARC HPV Information Centre 2019 Personal communication SH Aliyev</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>8,7% (n=206)</td>
<td>6,5/4.6 9,3</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>ICO/IARC HPV Information Centre 2019 Personal communication SH Aliyev</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>18,1% (n=6431)</td>
<td>9.9/5.4</td>
<td>NO</td>
<td>Yes</td>
<td>2019</td>
<td>ICO/IARC HPV Information Centre 2019 According to the statistics of the Ministry of the Republic of Uzbekistan 2018 https://www.who.int/countries/uzb/en/ Rakhmanova, J. A. 2020</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>28.3</td>
<td>15.7/7.5 18.1</td>
<td>yes</td>
<td>Yes</td>
<td>NO/Partial program 2013 Planning in 2021</td>
<td>Personal communication Lokshin V.N. 2019 Gulzhanat Aimagambetova 2018</td>
</tr>
<tr>
<td>Kirgizstan</td>
<td>NO</td>
<td>19.9/10.9</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>ICO/IARC HPV Information Centre 2019</td>
</tr>
<tr>
<td>Russia</td>
<td>25</td>
<td>15.08/5.07</td>
<td>NO/Partial program</td>
<td>Yes</td>
<td>NO/Partial program 2013</td>
<td>Каприн А.Д., Старынкин В.В., 2018 RAGIN, 2020 https://www.hse.ie/eng/health/immunisation/infomaterials/leaflettranslations/russianhpv.pdf</td>
</tr>
<tr>
<td>Country</td>
<td>Screening age</td>
<td>Screening interval</td>
<td>Screening methods</td>
<td>Screening system</td>
<td>Registries</td>
<td>Coverage</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>First intercourse or 18 years– No upper</td>
<td>Annually</td>
<td>Pap test with basic Romanowsky or H&E staining</td>
<td>Opportunistic; call-recall in few</td>
<td>National Cancer Registry, national and regional population registry</td>
<td>20–25%</td>
</tr>
<tr>
<td>Moscow</td>
<td>age limit 35–69 years</td>
<td>Every 3 years</td>
<td>Pap test with basic Romanowsky or MGG staining</td>
<td>regions on irregular basis Opportunistic screening program;</td>
<td>Moscow Cancer Registry, population registry</td>
<td>40–90%</td>
</tr>
<tr>
<td>Belarus</td>
<td>18 years– No upper age limit</td>
<td>Annually</td>
<td>Pap test</td>
<td>call-recall in few regions on irregular basis</td>
<td>National Cancer Registry, population registry</td>
<td>75–80%</td>
</tr>
<tr>
<td>Republic of Moldova</td>
<td>20 years– No upper age limit</td>
<td>Every 2 years</td>
<td>Pap test</td>
<td>Opportunistic; no call-recall system</td>
<td>National population registry</td>
<td>Not available</td>
</tr>
<tr>
<td>Ukraine</td>
<td>18–65 years</td>
<td>Annually</td>
<td>Smear test with basic Romanowsky and Papanicolaou staining</td>
<td>Opportunistic; no call-recall system</td>
<td>National Cancer Registry, national population registry; registration in a computerized system in two regions</td>
<td>20–30%</td>
</tr>
</tbody>
</table>

Rogovskaya et al, 2013
Cervical cancer screening activities in RF and former SU (HPVcenter 2019)

<table>
<thead>
<tr>
<th>Country</th>
<th>Screening age</th>
<th>Screening interval</th>
<th>Screening methods</th>
<th>Screening system</th>
<th>Registries</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armenia</td>
<td>30–60 years</td>
<td>Every 3 years</td>
<td>Pap test</td>
<td>Opportunistic, management by local, regional and national health authorities, no call-recall system</td>
<td>Pap smear results centrally recorded in a national database</td>
<td>10–20%</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>Not available</td>
<td>Not available</td>
<td>Pap test</td>
<td>Opportunistic screening</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>Georgia</td>
<td>25–60 years</td>
<td>Every 3 years</td>
<td>Pap test</td>
<td>Opportunistic with some elements of call-recall system</td>
<td>Not available</td>
<td>20%</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>30–60 years</td>
<td>Every 5 years</td>
<td>Conventional</td>
<td>Call-recall system in few regions on unregular basis</td>
<td>National Cancer</td>
<td>75%</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>20 years - No upper age limit</td>
<td>Not available</td>
<td>Pap test</td>
<td>Organized cervical cancer screening in four pilot regions (dated 2011)</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Not available</td>
<td>Every 5 years</td>
<td>Pap test and HPV test</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
</tbody>
</table>

Rogovskaya et al, 2013
HPV and related diseases trends in countries

- The incidence of cervical cancer trend - no tendency to decline
- Genital wart trend - no tendency to decline
- Cervical cancer - rejuvenation of pathology
- High proportion of advanced cervical cancer
- High mortality rate
- Screening is generally available with Pap
- Treatment mainly is not available for free

RAGIN, 2020
Conclusion

- Organized cervical cancer screening and National programmes are needed
- In our opinion, the basis of organized screening currently, due to its economic feasibility, should be the traditional PAP test, trend – to LBC with automated staining of smears.
- Integration of HPV tests into screening on the basis of domestic economical technologies, as an addition to the already formed system of organized screening. No validity
- Epidemic studies are needed using validated tests with genotyping and a clear distribution of populations
- Implementing e-registry for HPV associated diseases cases and HPV carrying into state system of diseases
- Implementing info about HPV and its prevention into educational programs for medical staff and population.
- RAGIN project for education is ongoing

RAGIN, 2020
Thank you for attention!