Transmission Reduction and Prevention with HPV Vaccination

AARON MACCOSHAM, MARIAM EL-ZEIN, ANN N. BURCHELL, PIERRE-PAUL TELLIER, FRANÇOIS COUTLÉE, EDUARDO L. FRANCO
Couple-based studies

- HPV transmission investigated in longitudinal couple-based studies

- Recently formed relationships: optimal for examining transmission dynamics

- HITCH: only HPV couple-based transmission study to target recently formed couples
 - Vaccination → transmission reduction (Wissing, Cancer Epidemiol Biomarkers Prev, 2019)

- No RCTs on the reduction of HPV transmission in couple-based studies
Objective: To determine the efficacy of an HPV vaccine in reducing transmission of genital and oral HPV infection to sexually active heterosexual partners of HPV vaccinated individuals.
2x2 Factorial Design

<table>
<thead>
<tr>
<th>Female (F) vaccination</th>
<th>Male (M) vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV (Gardasil 9: T)</td>
<td>M^{TF_T}</td>
</tr>
<tr>
<td>Placebo (Hepatitis A: P)</td>
<td>M^{PF_T}</td>
</tr>
<tr>
<td></td>
<td>HPV (Gardasil 9: T)</td>
</tr>
<tr>
<td></td>
<td>Placebo (Hepatitis A: P)</td>
</tr>
<tr>
<td></td>
<td>M^{TF_P}</td>
</tr>
<tr>
<td></td>
<td>M^{PF_P}</td>
</tr>
</tbody>
</table>
Sample size

- **500 couples needed**

- Based on Bernstein and Lagakos approach *(Bernstein, J Clin Microbiol, 2006)*
 - 90% power
 - type one error: 0.05
 - one-sided hypothesis for reductions: 40% rate of transmission
 - assuming cumulative 16% loss to follow-up at month 12
 - attrition rate: 2.7% per-visit
Eligibility criteria

- Volunteer couples must:
 1. not have been vaccinated with the intervention vaccine.
 2. plan on remaining in Montreal for at least 1 year.
 3. be in a new relationship that started no more than six months prior to study entry.
 4. plan on having continued sexual contact with partner.
 5. be between 18-45 years old.
 6. have no history of cervical, penile, oral or anal cancers.
 7. be willing to comply with study procedures.
Recruitment

- Ongoing since January 2014
- Recruitment strategies:
 - posters
 - e-mails to student lists
 - promotional videos
 - online classified advertising services
 - word-of-mouth
- Untraditional approach: potential participants answer pre-eligibility survey
Time points

Months

0 2 4 6 9 12

- Vaccination
- Oral, penile, and vaginal sampling
- Self-administered questionnaires
- Blood sample

Maximum 6 months

Partnership formation
HPV Testing

- Master Pure extraction kit (Epicenter, Madison, Wisconsin) (Habis, Cancer Epidemiol Biomarkers Prev, 2004)

- Linear Array HPV Genotyping Test (Roche Molecular Systems, Indianapolis, Indiana) (Coutlée, J Clin Microbiol, 2006)
 - Detects 36 HPV types
 - 6, 11, 16, 18, 26, 31, 33-35, 39, 40, 42, 44, 45, 51-54, 56, 58, 59, 61, 62, 66-73, 81-84, and 89
 - PGMY09/11 consensus primer system targets L1 gene
Outcomes

- Reduction of HPV infections with target HPV vaccine types in multiple anatomic sites in Avaxim-administered sexual partners of HPV vaccinated individuals
- Reduction in HPV type concordance, evaluable as per these group contrasts

<table>
<thead>
<tr>
<th>Female (F) vaccination</th>
<th>Male (M) vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV (Gardasil 9: T)</td>
<td>Placebo (Avaxim: P)</td>
</tr>
<tr>
<td>M^T F^T</td>
<td>M^P F^P</td>
</tr>
<tr>
<td>Placebo (Avaxim: P)</td>
<td></td>
</tr>
<tr>
<td>M^T F^P</td>
<td>M^P F^P</td>
</tr>
</tbody>
</table>
Statistical analysis

- Advanced regression methods

- Kaplan-Meier: plot the cumulative probability of HPV infection in sexual partners of vaccinated versus unvaccinated individuals against follow-up time

- Log-rank test: comparisons in HPV transmission between vaccine & control groups

- Additional cumulative risk models fitted with type-specific transmission as an outcome
Strengths

- First RCT to investigate HPV transmission reduction via vaccination within couples

- Few couple-based studies have recruited a target sample size ≥500 couples
 - 502 (El-Zein, JMIIR Res Protoc, 2019)
 - 874 (Liu, Sci Rep, 2015)

- TRAP-HPV could provide empirically-derived estimates for health economic models and mathematical models predicting herd immunity
Challenges & Amendments

- Upper age limit: increased from 26 to 40 years old, and once more to 45 years old
- Compensation: increased from $350 to $500 per couple and further to $1000
- Collection of anal samples discontinued
- Gardasil replaced with Gardasil 9 as intervention vaccine
- Havrix (GlaxoSmithKline) replaced with Avaxim (Sanofi Pasteur) as placebo vaccine
446 assessed for eligibility

- 286 ineligible

160 randomized

- 43 allocated to M^{TF^T}
 - 21 completed
 - 12 partial FU
 - 10 ongoing

- 34 allocated to M^{TF^P}
 - 13 completed
 - 15 partial FU
 - 6 ongoing

- 40 allocated to M^{PF^T}
 - 18 completed
 - 12 partial FU
 - 10 ongoing

- 43 allocated to M^{PF^P}
 - 16 completed
 - 20 partial FU
 - 7 ongoing
Acknowledgements

TRAP-HPV study group

- Affiliated with the Division of Cancer Epidemiology, McGill University, Montréal, Canada
 - Allita Rodrigues (study coordinator); Natalia Morykon and Raphaela Rodrigues (management of subject participation and specimen collection); Sheila Bouten and Samantha Shapiro (data management)
- Affiliated with the Département de Microbiologie Médicale et Infectiologie, Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
 - Julie Guénoun (HPV testing and genotyping)

We wish to thank

- volunteering participants
- employees of the TRAP-HPV Study
 - Jennifer Selinger, Maude Pastor, Abbie Chan, and Parker Tope (study promotion); Deisy Bustillo-Dominguez, Catherine Nguyen-Huy (temporary management of subject participation and specimen collection)
- Doris Edmond (Student Health Services Clinic, Concordia University) and the staff of the Student Health Services Clinics at McGill and Concordia universities for their collaboration
- Dr. Agnihotram V. Ramanakumar for conducting the randomization
- Dr. Ziad Al-Khatib and Dr. Tam Dang-Tan for assisting in the preparation of the grant proposal