Lopende projecten

Ontwikkeling van een innovatief functioneel assay gebruik makend van hiPSC-afgeleide hartweefsel constructen om de pathogeniciteit te bepalen van genetische varianten geïdentificeerd in patiënten met erfelijke hartritmestoornissen; 01/10/2021 - 30/09/2025

Abstract

Erfelijke hartritmestoornissen zijn genetische aandoeningen waarbij patiënten een gevaarlijk afwijkend hartritme kunnen ontwikkelen dat kan leiden tot flauwvallen en plotse hartdood. Er zijn al meer dan 60 genen voor deze hartritmestoornissen geïdentificeerd. Met de nieuwste technieken is het mogelijk om al deze genen tesamen te screenen in één enkele moleculair diagnostische test. Deze analyse detecteert duidelijke ziekte veroorzakende genetische varianten in patiënten, maar leidt ook tot de identificatie van een groot aantal varianten waarvan onzeker is of ze met de ziekte te maken hebben. Dit belemmert een optimaal medisch beleid bij deze patiënten. Daarom is het doel van dit project een functioneel instrument dat het effect van deze 'varianten van onzekere betekenis' (VUS) nagaat te ontwikkelen. We zullen een zeer vernieuwend model ontwikkelen, gemaakt van humane geïnduceerde pluripotente stamcellen (hiPSC) met ingebouwde fluorescente eiwitten die signalen uitzenden die cellulaire actiepotentialen en calcium huishouding weergeven. Van deze hiPSC maken we cardiomyocyten, cardiale fibroblasten en endotheelcellen die we in een gecontroleerde mix laten uitgroeien tot hartweefsel constructen (cMT). De elektrische activiteit en calcium huishouding van deze cMTs kan vervolgens gemeten worden met een gespecialiseerde confocale fluorescentie microscoop. We zullen eerst gekende ziekte veroorzakende mutaties inbrengen in het genoom van deze transgene hiPSCs en hun effect op de elektrische activiteit van de afgeleide cMTs bestuderen. Vervolgens zullen we deze methode gebruiken om het functioneel effect na te gaan van VUSsen geïdentificeerd in patiënten. Deze innovatieve aanpak zal leiden tot een verbeterde moleculaire diagnostiek van erfelijke hartritmestoornissen en dokters in staat stellen om echte gepersonaliseerde geneeskunde toe te passen.

Onderzoeker(s)

Onderzoeksgroep(en)

Convergerende mechanismes aan de basis van thoracale aorta aneurysma's 01/10/2021 - 30/09/2025

Abstract

Progressieve dilatatie van de aorta leidt tot de ontwikkeling van thoracale aorta aneurysma's (TAAs). Deze aneurysma's resulteren frequent in een dissectie of ruptuur van de aorta, dewelke gepaard gaan met een mortaliteit van 50%. Bijgevolg vormen zij een belangrijke oorzaak van morbiditeit en mortaliteit in de Westerse wereld. Profylactische chirurgie bij TAA patiënten reduceert de mortaliteit tot ongeveer 5%, maar is geassocieerd met een relatief hoog risico op complicaties. Identificatie van nieuwe medicatie die de vorming van aneurysma's kan stoppen of zelfs omkeren, is essentieel, maar is momenteel nog niet voorhanden. Het verder ontrafelen van de onderliggende TAA mechanismen is noodzakelijk om meer efficiënte medicijnen te ontwikkelen. Als gevolg van de huidige –omics technologieën is het nu mogelijk om op een hypothese-vrije manier pan-TAA pathomechanismen te onderzoeken. Dit opent deuren naar het identificeren van nieuwe ziekteprocessen en bijgevolg het ontwikkelen van nieuwe medicatie. Met dit project willen we als eerste de uitdaging aangaan om convergente ziekteprocessen voor TAA op een hypothese-vrije manier te identificeren, gebruikmakend van muismodellen en humane iPSC-afgeleide celmodellen. De voorziene resultaten zullen de huidige pathomechanistische kennis over TAA significant verbeteren en zullen de ontwikkeling van nieuwe therapeutische strategieën bevorderen.

Onderzoeker(s)

Onderzoeksgroep(en)

Het ontrafelen van het paradigma van tegengestelde fenotypes veroorzaakt door pathogene varianten in het FBN1 gen. 01/10/2021 - 30/09/2024

Abstract

Het Marfan syndroom (MFS) en acromelische dysplasieën (AD) worden veroorzaakt door pathogene varianten in het fibrilline-1 (FBN1) gen. Opmerkelijk is dat MFS wordt gekenmerkt door ernstige thoracale aorta aneurysma's (TAA), een grote gestalte en lange vingers/tenen, terwijl patiënten met AD een kleine gestalte en korte vingers/tenen hebben en geen TAA ontwikkelen. Een verlies van microfibrillen wordt gezien als de oorzaak van MFS, terwijl het verlies van eiwitinteracties aan de basis zou liggen van AD. Echter, de reeds beschreven veranderingen in eiwitinteracties lijken het AD fenotype niet (volledig) te verklaren. Toegenomen TGF-? signalisatie is zowel in MFS aortaweefsel van mens en muis als in fibroblasten van AD patiënten beschreven. Bijgevolg blijven de exacte functionele gevolgen van AD en MFS-mutaties op cel signalisatie tot op heden een voorwerp van discussie. De belangrijkste vragen blijven dus: (1) welke mechanismen verklaren waarom TAA uniek is voor MFS? En (2) waarom geven heterozygote FBN1-mutaties, die beide leiden tot verhoogde TGF-?-signalisatie, aanleiding tot tegengestelde skeletfenotypes? In dit project wil ik de mechanismen die aan de basis liggen van de skelet- en aortafenotypen ontcijferen aan de hand van multi-omics onderzoek in muis en humane (cel)modellen van MFS en AD. De verwachte resultaten kunnen nieuwe therapeutische targets opleveren, wat essentieel is voor de behandeling van de levensbedreigende TAA die MFS patiënten ontwikkelen.

Onderzoeker(s)

Onderzoeksgroep(en)

Moleculaire exploratie van een nieuw aortopathie syndroom met sterk potentieel tot doorbraak in de pathogenese en behandeling van erfelijke thoracale aorta aneurysma's. 01/01/2021 - 31/12/2024

Abstract

Thoracale aorta aneurysma's (TAAs) zijn abnormale verwijdingen van de hoofdslagader (aorta) en worden veroorzaakt door zwakte van de bloedvatwand. Deze verwijdingen maken de aorta meer vatbaar voor bloedvatscheuren, welke vaak tot plotse dood leiden. Deze dramatische gebeurtenis laat de familie achter met vragen en bezorgdheid. Tot op heden zijn genetische veranderingen in meer dan 30 genen bekend als oorzaak van TAA. Deze mutaties bieden een verklaring voor circa 30% van alle TAA-patiënten. De ontdekking en karakterisatie van deze genetische vormen heeft sterk bijgedragen aan de huidige kennis aangaande het ontstaan van TAAs. Toch zijn de inzichten betreffende de ontwikkeling van TAA nog onvolledig, zijn er weinig voorspellende merkers voor het optreden van een aortascheur en zijn er geen behandelingen die verdere aortaverwijding kunnen tegenhouden. Bij de zoektocht naar nieuwe genetische oorzaken hebben wij recent een nieuwe recessieve ernstige vorm van syndromale TAAs ontdekt, veroorzaakt door mutaties in het IPO8 gen. Voortbouwend op deze ontdekking, wil het voorgestelde project de bestaande inzichten in het ontstaan en de behandeling van TAA verbeteren door (1) het aortafenotype van een Ipo8 knock out muismodel te bepalen alsook dit muismodel functioneel te karakteriseren, (2) de pathomechanistische muisbevindingen in de humane context te confirmeren in patiënt en controle iPSC-VSMCs en (3) medicaties die IPO8-gerelateerde aortopathie kunnen voorkomen te identificeren.

Onderzoeker(s)

Onderzoeksgroep(en)

Genoomwijde epistasis studie voor cardiovasculaire ernst in Marfan syndroom. 01/01/2021 - 31/12/2024

Abstract

Marfan syndroom (MFS) is een autosomaal dominante bindweefselziekte met pleiotrope manifestaties in de ogen, het skelet en cardiovasculaire systeem. Morbiditeit en mortaliteit worden vooral bepaald door aortawortel aneurysma dissecties of rupturen. Mutaties in het FBN1 gen, coderend voor fibrilline-1, zijn gekend als de genetische oorzaak, maar er is een slechte voorspellende waarde van de aard of plaats van de mutatie voor de ernst van het fenotype. Bovendien is er een brede intra- en interfamiliale fenotypische variabiliteit, van compleet asymptomatisch tot plotse dood op jonge leeftijd. De exacte onderliggende mechanismen zijn tot op heden ongekend. In dit project, hebben we gekozen voor een innovatieve strategie om de functionele effecten van een recurrente FBN1 mutatie te achterhalen en genetische modifiers van MFS-aortopathie te ontdekken, via volgende objectieven: (1) CRISPR-correctie van FBN1 p.Ile2585Thr in patiënt-specifieke iPSC-VSMCs, en functionele vergelijking met mutatie-dragende en controle iPSC-VSMCs. (2) Whole-genome sequencing, en RNA-seq van patiënt iPSC-VSMCs van de extreme uiteinden van het fenotypische spectrum voor genetische modifier identificatie. (3) CRISPR-modificatie om hun modificerende capaciteit te evalueren. De functionele effecten van de FBN1 mutatie en de identificatie van genetische modifiers zal onze aortopathie-kennis doen uitbreiden en resulteren in innovatieve therapeutische strategieën en meer gepersonaliseerde behandeling

Onderzoeker(s)

Onderzoeksgroep(en)

Zebravisfaciliteit. 01/12/2020 - 30/11/2021

Abstract

Financiële steun van de Universiteit Antwerpen nodig voor de oprichting van een zebravisfaciliteit voor het modelleren van humane genetische ziekten. Deze financiering zal worden aangevuld met steun van het Fonds voor Wetenschappelijk Onderzoek Vlaanderen.

Onderzoeker(s)

Onderzoeksgroep(en)

Op zoek naar genetische modifiers voor aortopathie in Loeys-Dietz families met een SMAD3 mutatie. 01/11/2020 - 31/10/2022

Abstract

Loeys-Dietz syndroom (LDS) is een genetische aandoening die gekenmerkt wordt door thoracale aorta aneurysma (TAA) of abnormale verwijding van de aorta. Dit kan leiden tot een aorta ruptuur of dissectie, welke een levensbedreigende complicatie vormt. LDS wordt veroorzaakt door genetische defecten in zes verschillende genen van de TGF? signalisatieweg (TGFBR1/2, SMAD2/3, TGFB2/3). Ondanks de vooruitgang die geboekt is in het ontrafelen van de genetische basis van LDS, begrijpen we nog steeds niet welke mechanismen verantwoordelijk zijn voor het variabele cardiovasculaire fenotype. Mijn project focust op patiënten van families met een pathogene SMAD3 variant die enerzijds geen aneurysma fenotype op oudere leeftijd en anderzijds wel op jonge leeftijd vertonen. Mijn hypothese is dat genetische modifiers van de primaire SMAD3 mutatie bijdragen tot het variabele fenotype in deze families. In dit project zal ik een innovatieve strategie toepassen om die genetische modifiers te identificeren. Ik zal koppelingsanalyse, gebaseerd op genoomwijde single nucleotide polymorfismen in twee grote SMAD3 families, combineren met genoom sequenering voor geselecteerde individuen. Daarnaast zal ik een SMAD3 iPSC-VSMC (vasculaire gladde spiercellen afgeleid van geïnduceerde pluripotente stamcellen) model ontwikkelen en karakteriseren, waarna ik de geïdentificeerde modifiers zal valideren met CRISPR/Cas9. Deze resultaten zullen ons meer inzicht brengen in de mechanismen betrokken bij LDS en TAA.

Onderzoeker(s)

Onderzoeksgroep(en)

Gebruik van innovatieve hiPSC-afgeleide cardiomyocyten en zebravis modellen om de pathogeniciteit te ontrafelen van genetische varianten met onbekende betekenis in Brugada syndroom patiënten 01/11/2020 - 31/10/2022

Abstract

Het Brugada syndroom (BrS) is een erfelijke hartritmestoornis die tot plotse hartdood kan leiden. BrS is verantwoordelijk voor 12% van de gevallen van plotse hartdood, vaak op jonge leeftijd (< 40 jaar oud). Screening met huidige diagnostische genen panels kan slechts in circa 30% procent van de BrS patiënten de ziekteveroorzakende genetische mutatie identificeren. Desondanks worden met deze testen vaak genetische varianten met onbekende betekenis (VUS) gevonden. Helaas is er een gebrek aan functionele studiemodellen die kunnen voorspellen of een VUS ziekteveroorzakend is. Daarom zal ik in mijn project twee "proof-of-concept" modellen ontwikkelen voor een gekende ziekteveroorzakende BrS mutatie in het CACNA1C gen: een hartspiercel model uit humane stamcellen en een vooruitstrevend transgeen zebravismodel met fluorescente indicatoren in het hart. Door deze functioneel te karakteriseren met innovatieve elektrofysiologische en beeldvormingstechnieken, kan ik op celniveau en in het volledig hart het effect van deze mutatie en zijn bijdrage tot de ziekte analyseren. Na deze validatie zal ik dezelfde strategie toepassen om het functionele effect van twee VUSsen, geïdentificeerd in twee BrS patiënten, te achterhalen. Deze vernieuwende studiemodellen en technieken zullen het mogelijk maken om accuraat te voorspellen of een VUS ziekteveroorzakend is, waardoor artsen meer specifieke risicoanalyse en preventie strategieën zullen kunnen toepassen voor hartritmestoornissen in de toekomst.

Onderzoeker(s)

Onderzoeksgroep(en)

Cardiogenomica. 01/10/2020 - 30/09/2023

Abstract

Mijn missie is om mijn cardiogenetica-onderzoeksgroep van de Universiteit Antwerpen te consolideren en uit te breiden als een expertisecentrum dat tot doel heeft de genetische oorzaken en onderliggende pathogenetische mechanismen te identificeren van zowel veel voorkomende als zeldzame genetische aandoeningen die het cardiovasculaire systeem beïnvloeden, in het bijzonder aorta aneurysmatische aandoeningen en primaire erfelijke aritmieën. Het uiteindelijke doel is om onze genetische en pathomechanistische ontdekkingen te vertalen naar een verbetering van de kwaliteit van leven van patiënten.

Onderzoeker(s)

Onderzoeksgroep(en)

Optische mapping van in vivo mechanismen van het zebravishart: exploratie van de pathogenese en overerving van catecholaminerge polymorfe ventriculaire tachycardie. 01/10/2020 - 30/09/2022

Abstract

Plotse hartdood wordt bij jonge mensen voornamelijk veroorzaakt door overerfbare hartziekten. Mutaties in genen die zorgen voor een normale hartslag, liggen hier vaak aan de oorzaak. Er zijn reeds verschillende genen geïdentificeerd die plotse hartdood veroorzaken. Maar voor een groot deel van de patiënten, zijn de genetische test niet conclusief omdat er een genetische variant met ongekende betekenis wordt geïdentificeerd (zogenaamde VUS). In dit project, wil ik een nieuwe model ontwikkelen om het effect van deze mutaties op het hart in vivo te bestuderen. Hiervoor zal ik een nieuwe zebravislijn ontwikkelen waarbij de elektrische signalen en chemische calcium signalen in het hart worden omgezet naar fluorescente licht signalen. Zebravissen zijn de eerste dagen van hun leven doorzichtig waardoor dit diermodel zich er perfect toe leent om deze signalen te visualiseren in vivo. Ik zal het nieuwe ontwikkelde zebravismodel gebruiken om één specifieke cardiale aandoening beter te begrijpen, namelijk catecholaminergische polymorfische ventriculaire tachycardie (CPVT). Deze aandoening wordt gekenmerkt door abnormale calcium signalisatie in het hart waardoor mijn methode uiterst geschikt is om CPVT te bestuderen. Zowel in de literatuur als in onze eigen Cardiogenetica Kliniek, zijn reeds verschillende CPVT families geïdentificeerd met een onduidelijk overerfpatroon. Met mijn assay zal ik de mechanismen van CPVT in deze families kunnen blootleggen, de resultaten van de genetische testen kunnen verduidelijken en hierdoor dus bijdragen tot een verbeterde diagnostische screening voor CPVT.

Onderzoeker(s)

Onderzoeksgroep(en)

Multiwell Micro-Electrode Array (MEA): een brug naar highthroughput elektrofysiologie. 01/05/2020 - 30/04/2024

Abstract

Dit project voorziet een upgrade van de huidige elektrofysiologie technologieën aan de Universiteit Antwerpen door de aankoop van een state-of-the-art Multi-Electrode Array (MEA) platform. Patch-clamping is de huidige gouden standaard voor de studie van de elektrofysiologie van exciteerbare cellen maar is een uiterst arbeidsintensieve en invasieve techniek, die slechts korte termijn metingen van individuele cellen toelaat. MEAs daarentegen voorzien high-throughput, niet-invasieve, longitudinale metingen van functionele cel-netwerken zonder verstoring van belangrijke cel-cel contacten en onderzoeken dus een fysiologisch meer relevant model. Bovendien laat het multiwell aspect toe dat er verschillende celculturen onder verschillende condities onderzocht kunnen worden. Dit geeft ook de opportuniteit om "drug library" screeningen uit te voeren. Gebaseerd op deze voordelen, zijn MEA platformen uitermate geschikt voor de pathomechanistische studie van neurologische en cardiovasculaire aandoeningen door middel van specifieke assays voor het bestuderen van (1) cardiale activiteit: meting van veld- en actiepotentialen van (iPSC-)hartspiercellen voor studie van de vorm, conductie en aritmie; (2) neuronale activiteit met belangrijke parameters: actiepotentiaal activiteitsgraad, synchroniciteit als maat voor synaps-sterkte, oscillatie voor karakterisatie van de neuronale organisatie; (3) (iPSC)-vasculaire gladde spier contractiliteit op basis van impedantie-veranderingen.

Onderzoeker(s)

Onderzoeksgroep(en)

BMP signaaltransductie in vaatwand biologie en pathologie. 01/01/2020 - 31/12/2024

Abstract

Hart- en vaatziekten zijn wereldwijd de belangrijkste oorzaak van sterfte en invaliditeit. Deze ziekten omvatten hartfalen, coronaire hartziekte, hypertensie, cerebrovasculaire en perifere vaatziekten. Het disfunctioneren van endotheelcellen (EC's) die de binnenwand van de vasculatuur bekleden, is een belangrijke oorzaak van de progressie van hart- en vaatziekten. Mutaties in genen die coderen voor verschillende componenten van de bone morphogenetic protein (BMP) pathway veroorzaken verschillende ernstige vaatziekten zoals hereditaire hemorrhagische telangiectasie (HHT), bicuspide aortaklep met thoracale aorta-aneurysma's (BAV/TAA) en pulmonale arteriële hypertensie (PAH) (Goumans et al., 2018). BMP's zijn gesecreteerde factoren die behoren tot de grotere transformerende groeifactor (TGF)β familie. Signalering door BMPs draagt bij aan de morfologische, functionele en moleculaire verschillen ('heterogeniteit') tussen ECs in verschillende vaattypen zoals slagaders, aders, lymfevaten en in verschillende organen. Inzicht in hoe BMP signaal co-regulerend is voor EC heterogeniteit in homeostase en hoe de ontregeling kan bijdragen tot ziekte is essentieel om inzicht te krijgen in het ontstaan van vaattype beperkte aandoeningen en om verbeterde ziekte-afgestemde therapieën met verminderde neveneffecten te ontwerpen. De BMP signaalroute is een belangrijk therapeutisch doelwit voor vasculaire aandoeningen, en verschillende BMP modulatoren worden reeds in de kliniek gebruikt. De BMP signaaloutput is kritisch afhankelijk van de cellulaire context in de vaatwand, waaronder de flow hemodynamica, ontsteking, interactie met andere "vasculaire" signaalcascades en de interactie van ECs met peri-endotheliale cellen en de omliggende matrix. De BMP-gemeenschap - die lange tijd botgeconcentreerd is gebleven - bundelt nu relatief recent haar krachten in de vasculaire biologie binnen Europa. Wij voelen het momentum om samen te werken met het huidige multidisciplinaire netwerk consortium bestaande uit 8 'Vlaamse' teams van 3 Universiteiten en 6 externe teams om gezamenlijk te onderzoeken hoe i) disfunctionele BMP pathways bijdragen aan vaat(instabiliteits)ziekten, ii) hoe verminderde BMP signalering de mechanobiologie (interpretatie van stroming, cellulaire tracties, matrix stijfheid) in de vaatwand beïnvloedt en iii) veelbelovende op BMP gebaseerde vaatherstelstrategieën te valideren in onze verschillende modellen. De verschillende partners van dit WOG netwerk bestuderen verschillende aspecten van BMP/TGFβ signalering en/of vasculaire (mechano)biologie en ziekte (zie verder). Binnen dit multidisciplinaire consortium willen we de ontrafeling van BMP-gemedieerde mechanismen van EC heterogeniteit en mechanotransductie versnellen om etiologie-gebaseerde vasculaire herstelstrategieën te verfijnen en te verbeteren, een belangrijke uitdaging in het genezen van vaat-gerelateerde ziekten. Onze doelstellingen zijn om: i) het verhogen van de kritische massa in Vlaanderen rond BMP signaaltransductie en haar interactie met mechanotransductie in vasculaire aandoeningen en het stimuleren van trans- en interdisciplinaire samenwerkingen binnen dit consortium, om sneller gemeenschappelijke en specifieke kenmerken van (verstoorde) BMP functies in verschillende vasculaire bedden en vaat(instabiliteits)aandoeningen te onderstrepen; ii) modelleer en valideer strategieën voor vaatnormalisatie in onze verschillende fysiopathologische systemen en vertaal de resultaten naar een klinische setting;. iii) een "incubator" omgeving te creëren en een solide basis voor toekomstige succesvolle financieringsaanvragen (hefboomwerking) iv) elkaars werk in een vroeg stadium bloot te leggen en uit te dagen om de onderzoeksoutput en het concurrentievermogen te versterken en te vergroten v) de zichtbaarheid van alle teams in Vlaanderen en internationaal te vergroten, de junior talenten in de teams te stimuleren en hoog opgeleide doctoraten/masters/bachelors af te leveren

Onderzoeker(s)

Onderzoeksgroep(en)

BMP signaaltransductie in vaatwand biologie en pathologie. 01/01/2020 - 31/12/2024

Abstract

Cardiovasculaire aandoeningen zijn een belangrijke doodsoorzaak (31%). We onderscheiden hierbij hartfalen, coronaire arterie aandoeningen, hartafwijkingen, hypertensie, cerebrovasculaire anomalieën en perifere vasculaire aandoeningen. Dysfunctie van de endotheliale cellen die de binnenkant van de bloedvaten bekleden is een drijvende factor voor de progressie van cardiovasculaire problemen. Mutaties in genen die coderen voor verschillende componenten van de 'bone morphogenetic protein' (BMP) signalisatie cascade veroorzaken een waaier aan ernstige vasculaire ziektes zoals 'hereditary hemorrhagic telangiectasia', bicuspide aortaklep met thoracale aorta aneurysmata, en pulmonale arterie hypertensie. BMPs zijn gesecreteerde factoren die tot the grotere TGFbeta superfamilie behoren. Signalisatie via BMPs draagt bij aan morfologische, functionele en moleculaire verschillen tussen ECs in arteriën, venen, lymfatische vaten en in verschillende organen. Om nieuwe therapieën te ontwikkelen is het uitermate belangrijk om beter te verstaan hoe BMP signalisatie EC heterogeneiteit controleert en hoe dysfunctie van dit gecoordineerd proces tot ziekte kan leiden.

Onderzoeker(s)

Onderzoeksgroep(en)

Pathomechanistische studie van biglycan gerelateerde aortopathie en skeletdysplasie. 01/01/2020 - 31/12/2023

Abstract

De aorta is de belangrijkste arterie en voorziet de rest van het lichaam van zuurstofrijk bloed. Een dilatatie van de thoracale aorta leidt tot de ontwikkeling van thoracale aorta aneurysma's (TAA). Deze verwijdingen zijn vatbaar voor bloedvatscheuren welke vaak tot plotse dood leiden. In 2016 hebben wij BGN (Biglycan) geïdentificeerd als nieuwe oorzaak van een ernstige vorm van TAA en deze aandoening wordt nu Meester-Loeys syndroom (MLS) genoemd. Parallel aan onze observaties werden andere mutaties in BGN beschreven als de oorzaak van X-gebonden spondylo-epi-metafysaire dysplasie (X-SEMD), dat gekenmerkt wordt door een klein gestalte. Op basis van de huidige kennis is het onduidelijk welke mechanismen verklaren waarom sommige mutaties in BGN leiden tot X-SEMD en anderen tot MLS en waarom alleen MLS patiënten met BGN deletie een mild skeletaal fenotype ontwikkelen. Dit project heeft als doel deze vragen te beantwoorden door middel van de volgende objectieven: (1) karakterisatie van het fenotype en het pathomechanisme van muismodellen voor TAA en X-SEMD, (2) de verificatie van de functionele verschillen tussen BGN mutaties die MLS versus X-SEMD veroorzaken in een humaan celmodel en (3) de identificatie van de rol van een alternatieve splice-vorm van het biglycan eiwit in de ontwikkeling van skeletale kenmerken in MLS.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontdekking van genetische modifiers die de fenotypische cardiovasculaire variabiliteit in Marfan syndroom verklaren voor meer geïndividualiseerde behandelingen. 01/11/2019 - 31/10/2022

Abstract

Marfan syndroom (MFS) is een autosomaal dominante bindweefselziekte met pleiotrope manifestaties in de ogen, het skelet en cardiovasculaire systeem. Morbiditeit en mortaliteit worden meestal bepaald door aortawortel aneurysma dissecties of rupturen. Mutaties in het FBN1 gen, coderend voor fibrilline-1, zijn gekend als de genetische oorzaak, maar er is een slechte correlatie tussen de aard of locatie van de mutatie en het fenotype. Bovendien is er een brede intra- en interfamiliale fenotypische variabiliteit, van compleet asymptomatisch tot plotse dood op jonge leeftijd. De exacte onderliggende mechanismen zijn tot op heden ongekend. In dit project, heb ik gekozen voor een innovatieve strategie om de functionele effecten van een recurrente FBN1 mutatie te achterhalen en genetische modifiers van MFS-aortopathie te ontdekken, via volgende objectieven: (1) CRISPR-correctie van de recurrente FBN1 p.Ile2585Thr in patiënt-specifieke iPSC-VSMCs, en functionele vergelijking met mutatie-dragende en controle iPSC-VSMCs. (2) Whole-genome sequencing, en RNA-seq van patiënt iPSC-VSMCs van de extreme uiteinden van het fenotypische spectrum voor genetische modifier identificatie. (3) CRISPR-modificatie om hun modificerende capaciteit te evalueren. De functionele effecten van de FBN1 mutatie en de identificatie van genetische modifiers zal onze aortopathie-kennis verder uitbreiden, resulterend in innovatieve therapeutische strategieën en meer individueel gerichte behandelingen.

Onderzoeker(s)

Onderzoeksgroep(en)

Functionele genomica. 01/10/2019 - 30/09/2024

Abstract

De term bindweefselaandoeningen (CTDs) refereert naar een grote en diverse groep van ziektes die het eiwitrijke weefsel dat onze organen ondersteunt aantast. Patiënten vertonen doorgaans huid-, ruggengraat, oog-, hart-, bloedvat- en/of skeletafwijkingen. CTDs kunnen ontstaan door een erfelijke belasting of ten gevolge van omgevingsfactoren. Wat de erfelijke vormen betreft zijn er de afgelopen jaren erg veel nieuwe ziektegenen ontdekt. Diepgaande analyse van het functionele effect van deze genetische fouten is nu hoogstnoodzakelijk om de ziekteprocessen beter te begrijpen en nieuwe therapieën te kunnen ontwikkelen. Ik zal een onderzoeksgroep opstarten die op deze specifieke noden inspeelt.

Onderzoeker(s)

Onderzoeksgroep(en)

De zoektocht naar chaperone agonisten voor skeletdysplasieën die door dominant-negatieve COL2A1 mutaties veroorzaakt worden. 01/10/2019 - 30/09/2023

Abstract

Heterozygote missense mutaties in het gen dat voor collageen type II codeert (i.e. COL2A1) verklaren respectievelijk 95% en 70% van de hypochondroplasie en spondyloepifysaire dysplasie congenita patiënten, alsook een kleinere fractie van patiënten met sterk gerelateerde fenotypes. Eerdere functionele karakterisatie van iPSC-afgeleide of getransdifferentieerde chondrocyten van dragers van COL2A1 missense mutaties toonde een verhoogde expressie van endoplasmatisch reticulum (ER) stress en apoptose merkers in combinatie met een lagere expressie van kraakbeen matrixeiwitten aan. Abnormale procollageen opvouwing wordt aangenomen niet enkel tot de ontwikkeling van COL2A1-gerelateerde skeletaandoeningen bij te dragen, maar een majeur proces in de pathogenese van verschillende skeletdysplasieën te zijn. Chaperone-georiënteerde therapie is bijgevolg een interessante farmacologische optie om verder te exploreren. Dit project heeft als doel effectieve nieuwe medicijnen voor (COL2A1-gerelateerde) skeletdysplasieën te identificeren door iPSC-chondrocyten van COL2A1 glycine substitutie dragers aan een 'drug library' van 2400 chaperone-agonisten en -antagonisten te onderwerpen. De efficiëntie waarmee deze compounds het cellulaire fenotype kunnen herstellen zal aan de hand van geïntegreerde high-content kwantificatie van zowel apoptose en ER stress merkers als collageen type II gebeuren. Performantie van de interessantste compounds zal in knock-in COL2A1 muizen nagegaan worden.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontrafelen van de onderscheidende pathomechanismen voor biglycan gerelateerde aortopathie en spondylo-epi-metafysaire dysplasie. 01/10/2019 - 30/09/2022

Abstract

De aorta is de belangrijkste arterie en voorziet de rest van het lichaam van zuurstofrijk bloed. Een dilatatie van de thoracale aorta leidt tot de ontwikkeling van thoracale aorta aneurysma's (TAA). Deze verwijdingen zijn vatbaar voor bloedvatscheuren welke vaak tot plotse dood leiden. In 2016 heb ik BGN (Biglycan) geïdentificeerd als nieuwe oorzaak van een ernstige vorm van TAA en deze aandoening wordt nu Meester-Loeys syndroom (MLS) genoemd. In parallel met mijn observaties werden andere mutaties in BGN beschreven als de oorzaak van X-gebonden spondylo-epi-metafysaire dysplasie (X-SEMD), die gekenmerkt wordt door een klein gestalte. Op basis van de huidige kennis is het onduidelijk welke mechanismen verklaren waarom sommige mutaties in BGN leiden tot X-SEMD en anderen tot MLS en waarom alleen MLS patiënten met BGN deletie een mild skeletaal fenotype ontwikkelen. Dit project heeft als doel deze vragen te beantwoorden door middel van de volgende objectieven: (1) karakterisatie van het fenotype en het pathomechanisme van muismodellen voor TAA en X-SEMD, (2) de verificatie van de functionele verschillen tussen BGN mutaties die MLS versus X-SEMD veroorzaken in een humaan celmodel en (3) de identificatie van de rol van een alternatieve splice-vorm van het biglycan eiwit in de ontwikkeling van skeletale kenmerken in MLS.

Onderzoeker(s)

Onderzoeksgroep(en)

GENOmics in MEDicine: van volledige genoomsekwenering tot gepersonaliseerde geneeskunde 03/07/2019 - 31/12/2025

Abstract

GENOMED is een interfacultair Excellentieconsortium aan de Universiteit Antwerpen, bestaande uit vier onderzoeksgroepen. Het hoofddoel van GENOMED is om genetisch onderzoek in de biomedische wetenschappen naar een hoger niveau te tillen door gebruik te maken van state-of-the-art technologieën zoals Next generation sequencing (NGS), geïnduceerde pluripotente stamcellen en gene editing (CRISPR/Cas). De laatste jaren heeft GENOMED vooral ingezet op exoomsequenering, wat resulteerde in de identificatie van verscheidene nieuwe ziekte-veroorzakende genen. De overstap naar genoomsequenering zal echter essentieel zijn voor de ontwikkeling van gepersonaliseerde geneeskunde. Met het toekomstig onderzoek wil GENOMED zich toespitsen op twee uitdagingen: ten eerste, de ontwikkeling van technologieën die ons in staat stellen om de biologische betekenis te achterhalen van zowel coderende als niet-coderende variaties in het humane genoom, en ten tweede, het gebruik van deze nieuwe genetische inzichten voor een betere diagnose en behandeling. Op dit moment is het grootste probleem met NGS de moeilijkheid om onderscheid te maken tussen ziekte-veroorzakende mutaties en onschuldige variaties. De studie van de functionele consequenties van deze variaties zijn niet enkel cruciaal voor het begrijpen van de biologische basis van deze aandoeningen, maar ook nodig voor de stap naar gepersonaliseerde geneeskunde. Er is nood aan robuuste en efficiënte modelsystemen om de functionele gevolgen van deze variaties te achterhalen door gebruik te maken van in vitro celsystemen (voornamelijk iPSC) en/of proefdiermodellen (muis en zebravis) representatief voor de bestudeerde humane aandoeningen. Om de tweede uitdaging aan te gaan, zal het consortium met clinici en de industrie samenwerken om de genetische kennis te gebruiken voor de ontwikkeling en identificatie van biomerkers alsook om nieuwe genetische inzichten te vertalen naar innovatieve therapieën.

Onderzoeker(s)

Onderzoeksgroep(en)

Functionele evaluatie en therapeutische targeting van een nieuw aorta-aneurysma syndroom, wat tevens sterk potentieel heeft om de pathogenese en behandeling van het Marfan syndroom te informeren. 01/07/2019 - 30/06/2022

Abstract

Een thoracaal aorta-aneurysma (TAA) is een abnormale verwijding ven de thoracale aorta, wat veroorzaakt wordt door verzwakking van de aortawand. TAAs gaan gepaard met een significant risico op aorta-dissecties of -rupturen. Deze laatsten leiden frequent tot plotse dood en laten familieleden verward en bang achter. Mutaties in meer dan 30 genen zijn gelinkt aan TAA en verklaren ongeveer 30% van de patiënten. Hun identificatie en functionele karakterisatie zijn reeds erg belangrijk geweest in het ontcijferen van de pathogenese van TAA. De pathomechanistische TAA puzzel is echter nog niet volledig gelegd, wat identificatie en ontwikkeling van goede predictieve biomerkers of therapieën voor TAA belemmert. In onze Cardiogenetica onderzoeksgroep ontdekten we recent dat recessieve mutaties in IPO8 oorzaak kunnen zijn van een TAA syndroom dat sterke gelijkenissen vertoont met Marfan syndroom, Loeys-Dietz syndroom en Shprintzen-Golgberg syndroom. Tot op heden is er weinig gekend over de functie van IPO8, behalve dat het betrokken is bij cytosol-naar-nucleus transport van cargo eiwitten (inclusief SMAD eiwitten). Dit project bouwt verder op deze bevinding en heeft als doel de huidige moleculaire TAA kennis en de behandelingsstrategieën van TAA patiënten te verbeteren door (1) IPO8-gerelateerde processen te bestuderen in patiënt en controle-afgeleide cellen, en (2) nieuwe potentiële medicijnen voor IPO8-gerelateerde aortopathy te vinden aan de hand van een cel-gebaseerde metalloproteinase inhibitie assay.

Onderzoeker(s)

Onderzoeksgroep(en)

Genomia. 01/01/2019 - 31/12/2023

Abstract

Thoracale aorta aneurysma en dissectie (TAAD) is een belangrijke oorzaak van morbiditeit en mortaliteit in de Westerse populatie. Aangezien 20% van de patiënten een positieve voorgeschiedenis heeft, is er een significante bijdrage van genetische factoren tot TAAD ontwikkeling. Tientallen TAAD genen werden reeds geïdentificeerd. Hoewel mutaties in deze genen niet alle patiënten kunnen verklaren, is hun identificatie cruciaal geweest in het ontcijferen van de ziektemechanismes, namelijk verstoorde extracellulaire matrix homeostase, ontregelde TGFbeta signalisatie en verminderde contractie van de gladde spiercellen. Dankzij de ontwikkeling van next-generation sequencing technologieën, anticipeer ik dat de identificatie van andere genetische TAAD oorzaken evident zal zijn. De nieuwe uitdaging bestaat er nu uit om te bepalen waarom sommige mutatiedragers op jonge leeftijd aan TAAD sterven, terwijl anderen asymptomisch blijven. Zulke variabiliteit wordt zelfs binnen éénzelfde familie geobserveerd, wat betekent dat de primaire mutatie an sich dit fenomeen niet kan verklaren. Voor dit project heb ik zorgvuldig vier strategieën geselecteerd om genetische modifiers voor TAAD te identificeren gebruikmakend van humane en murine TAAD modellen. Identificatie van deze modificerende factoren zal de huidige kennis omtrent TAAD significant verbeteren, precisiegeneeskunde mediëren en nieuwe targets voor toekomstige therapieën aanleveren.

Onderzoeker(s)

Onderzoeksgroep(en)

Functionele karakterisatie en therapeutische targeting van een nieuw aortopathie syndroom veroorzaakt door recessieve IPO8 mutaties. 01/01/2019 - 31/12/2022

Abstract

Een thoracaal aorta-aneurysma (TAA) is een abnormale verwijding ven de thoracale aorta, wat veroorzaakt wordt door verzwakking van de aortawand. TAAs gaan gepaard met een significant risico op aorta-dissecties of -rupturen. Deze laatsten leiden frequent tot plotse dood en laten familieleden verward en bang achter. Mutaties in meer dan 30 genen zijn gelinkt aan TAA en verklaren ongeveer 30% van de patiënten. Hun identificatie en functionele karakterisatie zijn reeds erg belangrijk geweest in het ontcijferen van de pathogenese van TAA. De pathomechanistische TAA puzzel is echter nog niet volledig gelegd, wat identificatie en ontwikkeling van goede predictieve biomerkers of therapieën voor TAA belemmert. In onze Cardiogenetica onderzoeksgroep ontdekten we recent dat recessieve mutaties in IPO8 oorzaak kunnen zijn van syndromale TAA. Mijn doctoraatsproject bouwt verder op deze bevinding en heeft als doel de huidige moleculaire TAA kennis en de behandelingsstrategieën van TAA patiënten te verbeteren door (1) een Ipo8 knockout muislijn te karakteriseren, (2) IPO8-gerelateerde processen te bestuderen in patiënt en controle-afgeleide cellen, en (3) nieuwe potentiële medicijnen voor IPO8-gerelateerde aortopathy te vinden aan de hand van een cel-gebaseerde metalloproteinase inhibitie assay.

Onderzoeker(s)

Onderzoeksgroep(en)

De ontwikkeling van een functioneel model voor het bepalen van pathogeniciteit van varianten van onbekende betekenis in cerebrovasculaire aandoeningen en aorta aneurysmata. 01/01/2019 - 31/12/2021

Abstract

COL4A1- en COL4A2-gerelateerde aandoeningen zijn geassocieerd met een breed spectrum van afwijkingen zoals afwijkende hersenontwikkeling, hersenbloedingen op alle leeftijden, aneurysmata (locale verwijdingen) van de hersenvaten, maar ook oog- en nierafwijkingen. In de klinische praktijk worden beide genen onderzocht bij aandoeningen met hersenvaatafwijkingen, maar zijn ook geïncludeerd in genpanels om genetische oorzaken van verstandelijke beperking op te sporen. Bij deze onderzoeken worden soms varianten van onbekende betekenis (VUS) aangetoond. Vanwege de belangrijke consequenties van ziekteveroorzakende mutaties, is het zeer belangrijk om deze varianten correct te interpreteren. Daarnaast werd in onderzoeksverband gezien dat COL4A1- en COL4A2-mutaties mogelijk het optreden van aorta-aneurysmata beïnvloeden. Om dit te bevestigen is verder onderzoek nodig. We willen een zebravismodel ontwikkelen om het effect van varianten van onbekende betekenis te bestuderen. Op dit moment bestaat er echter nog geen zebravismodel om COL4A1- en COL4A2-gerelateerde aandoeningen te bestuderen. We zullen beginnen met het introduceren van gekende ziekteveroorzakende mutaties in een zebravis met fluorescerende bloedvaten om zo het effect op de ontwikkeling van de vis en de bloedvaten te bestuderen. We zullen het optreden van hersenbloedingen en veranderingen in bewegingspatroon en in de basaalmembraan, een structuur die de bloedvatwand stabiliseert, bestuderen, alsook de diameter van de aorta meten. Het doel is om de afwijkingen te identificeren die optreden bij duidelijk ziekteveroorzakende mutaties, zodat het vervolgens mogelijk wordt om varianten van onbekende betekenis te bestuderen in zebravis om zo te zien of ze bijdragen aan een ziektebeeld bij een patiënt.

Onderzoeker(s)

Onderzoeksgroep(en)

Identificatie van nieuwe therapeutische aangrijpingspunten voor Brugada syndroom door de ontdekking en karakterisatie van genetisch modifiers. 01/01/2018 - 30/06/2022

Abstract

Brugada syndroom is een erfelijke elektrische stoornis van het hart, die wordt gekenmerkt door een onregelmatig hartritme. Dit kan levenslang onopgemerkt blijven, maar ook leiden tot plotse hartdood, typisch in patienten tussen 25 en 55 jaar oud. Meer dan 25 genen werden reeds geidentificeerd waarin een oorzakelijke mutatie kan gevonden worden in ongeveer 30% van de BrS patienten. De vraag blijft waarom in dezelfde familie personen met exact dezelfde genetisch variant volledig asymptomatisch blijven, terwijl anderen episodes van aritmie doormaken of zelfs plotse dood. Ik zal een antwoord op deze vraag zoeken in een groep families met een gekende mutatie in het SCN5A gen die BrS veroorzaakt.

Onderzoeker(s)

Onderzoeksgroep(en)

Afgelopen projecten

Identificatie van pathologische sleutelmechanismen onderliggend aan bicuspide aortaklep-gerelateerde aortopathie met behulp van primaire endotheelcellen geïsoleerd uit embryonale Madh6 pups. 01/04/2020 - 31/01/2021

Abstract

Bicuspide aortaklep (BAV) wordt gekarakteriseerd door een aortaklep met slechts twee klepblaadjes in plaats van de normale drie. Het heeft een geschatte prevalentie van 1-2% en is daarmee de meest frequente congenitale hartafwijking. Hoewel de meeste BAV individuen geen symptomen vertonen, ontwikkelt tot 35% van deze personen ernstige cardiovasculaire complicaties, waaronder thoracale aorta aneurysmata (TAA) en dissecties. Deze laatsten gaan met significante morbiditeit en mortaliteit gepaard. BAV/TAA vormt momenteel een aanzienlijk gezondheidsprobleem omwille van de hoge BAV frequentie en het feit dat efficiënte farmacologische therapieën voor (BAV-gerelateerde) TAA niet voorhanden zijn. Recent identificeerden wij een aanrijking aan schadelijke SMAD6 varianten in BAV/TAA patiënten ten opzichte van de algemene populatie. SMAD6 komt sterk tot expressie in het cardiovasculair stelsel, waaronder ook in endotheelcellen. Het codeert voor een inhiberend SMAD eiwit dat zowel BMP als TGF-β signalisatie negatief reguleert, dewelke beiden reeds eerder met ontwikkeling van de aortaklep en aneurysmavorming gerelateerd werden. Bovendien wordt een dysfunctie van endotheelcellen vaker beschreven als belangrijke component in klepdefecten en aneurysmavorming. Dit project bouwt verder op onze genetische SMAD6 data en heeft als doel om kennis omtrent de BAV/TAA pathomechanismes te verbeteren door de moleculaire factoren en cellulaire processen die SMAD6 deficiëntie linken aan aortaklep- en aortawandafwijkingen te identificeren. Hiervoor zullen we gebruik maken van embryonale endotheelcellen geïsoleerd uit een Madh6 muismodel. De geanticipeerde resultaten zullen bijdragen tot het beter begrijpen van de ziekteontwikkeling, alsook kunnen deze resultaten leiden tot identificatie van nieuwe therapeutische doeleiwitten.

Onderzoeker(s)

Onderzoeksgroep(en)

Subsidie 2020 Centrum voor Menselijke Erfelijkheid. 01/01/2020 - 31/12/2020

Abstract

Deze financiering komt van de Vlaamse Overheid om de genetische centra in Vlaanderen te ondersteunen in hun kernopdrachten zoals onderzoek, onderwijs en patientenzorg. De financiering is jaarlijks hernieuwbaar na positieve evaluatie van het activiteitenverslag.

Onderzoeker(s)

Onderzoeksgroep(en)

Prijs van de Onderzoeksraad 2019 - Prijs Vandendriessche: Geneeskunde en Biomedische Wetenschappen. 01/12/2019 - 31/12/2020

Abstract

De aorta is de belangrijkste arterie en voorziet de rest van het lichaam van zuurstofrijk bloed. Een dilatatie van de thoracale aorta leidt tot de ontwikkeling van thoracale aorta aneurysma's (TAA). Deze verwijdingen zijn vatbaar voor bloedvatscheuren welke vaak tot plotse dood leiden. In 2016 heb ik BGN (Biglycan) geïdentificeerd als nieuwe oorzaak van een ernstige vorm van TAA en deze aandoening wordt nu Meester-Loeys syndroom (MLS) genoemd. In parallel met mijn observaties werden andere mutaties in BGN beschreven als de oorzaak van X-gebonden spondylo-epi-metafysaire dysplasie (X-SEMD), die gekenmerkt wordt door een klein gestalte. Op basis van de huidige kennis is het onduidelijk welke mechanismen verklaren waarom sommige mutaties in BGN leiden tot X-SEMD en anderen tot MLS en waarom alleen MLS patiënten met BGN deletie een mild skeletaal fenotype ontwikkelen. Dit project heeft als doel deze vragen te beantwoorden door middel van de volgende objectieven: (1) karakterisatie van het fenotype en het pathomechanisme van muismodellen voor TAA en X-SEMD, (2) de verificatie van de functionele verschillen tussen BGN mutaties die MLS versus X-SEMD veroorzaken in een humaan celmodel en (3) de identificatie van de rol van een alternatieve splice-vorm van het biglycan eiwit in de ontwikkeling van skeletale kenmerken in MLS.

Onderzoeker(s)

Onderzoeksgroep(en)

Op zoek naar genetische modifiers voor aortopathie in Loeys-Dietz families met een SMAD3 mutatie. 01/11/2019 - 31/10/2020

Abstract

Loeys-Dietz syndroom (LDS) is een genetische aandoening die gekenmerkt wordt door thoracale aorta aneurysma (TAA) of abnormale verwijding van de aorta. Dit kan leiden tot een aorta ruptuur of dissectie, welke een levensbedreigende complicatie vormt. LDS wordt veroorzaakt door genetische defecten in zes verschillende genen van de TGF? signalisatieweg (TGFBR1/2, SMAD2/3, TGFB2/3). Ondanks de vooruitgang die geboekt is in het ontrafelen van de genetische basis van LDS, begrijpen we nog steeds niet welke mechanismen verantwoordelijk zijn voor het variabele cardiovasculaire fenotype. Mijn project focust op patiënten van families met een pathogene SMAD3 variant die enerzijds geen aneurysma fenotype op oudere leeftijd en anderzijds wel op jonge leeftijd vertonen. Mijn hypothese is dat genetische modifiers van de primaire SMAD3 mutatie bijdragen tot het variabele fenotype in deze families. In dit project zal ik een innovatieve strategie toepassen om die genetische modifiers te identificeren. Ik zal koppelingsanalyse, gebaseerd op genoomwijde single nucleotide polymorfismen in twee grote SMAD3 families, combineren met genoom sequenering voor geselecteerde individuen. Daarnaast zal ik een SMAD3 iPSC-VSMC (vasculaire gladde spiercellen afgeleid van geïnduceerde pluripotente stamcellen) model ontwikkelen en karakteriseren, waarna ik de geïdentificeerde modifiers zal valideren met CRISPR/Cas9. Deze resultaten zullen ons meer inzicht brengen in de mechanismen betrokken bij LDS en TAA.

Onderzoeker(s)

Onderzoeksgroep(en)

Gebruik van innovatieve hiPSC-afgeleide cardiomyocyten en zebravis modellen om de pathogeniciteit te ontrafelen van genetische varianten met onbekende betekenis in Brugada syndroom patiënten. 01/11/2019 - 31/10/2020

Abstract

Het Brugada syndroom (BrS) is een erfelijke hartritmestoornis die tot plotse hartdood kan leiden. BrS is verantwoordelijk voor 12% van de gevallen van plotse hartdood, vaak op jonge leeftijd (< 40 jaar oud). Screening met de huidige diagnostische genen panels kan slechts in circa 30% procent van de BrS patiënten de ziekteveroorzakende genetische mutatie identificeren. Desondanks worden met deze testen vaak genetische varianten met onbekende betekenis (VUS) gevonden. Helaas is er een gebrek aan functionele studiemodellen die kunnen voorspellen of een VUS ziekteveroorzakend is. Daarom zal ik in mijn project twee "proof-of-concept" modellen ontwikkelen voor een gekende ziekteveroorzakende BrS mutatie in het CACNA1C gen: een hartspiercel model uit humane stamcellen en een vooruitstrevend transgeen zebravis model met fluorescente indicatoren in het hart. Door deze modellen functioneel te karakteriseren met innovatieve beeldvormingstechnieken, kan ik op het niveau van de cel en in het volledig hart het effect van deze mutatie analyseren en zo zijn bijdrage tot de ziekte evalueren. Na deze validatie, zal ik dezelfde strategie toepassen om het functionele effect van twee VUSsen, geïdentificeerd in twee BrS patiënten, te achterhalen. Deze vernieuwende studiemodellen en technieken zullen het mogelijk maken om accuraat te voorspellen of een VUS ziekteveroorzakend is, waardoor behandelaars meer specifieke risicoanalyse en preventie strategieën zullen kunnen toepassen in de toekomst.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontrafelen van de onderscheidende pathomechanismen voor biglycan gerelateerde aortopathie en spondylo-epi-metafysaire dysplasie. 01/04/2019 - 30/03/2020

Abstract

Een progressieve dilatatie van de aorta kan leiden tot de ontwikkeling van thoracale aorta aneurysma's, die vaak asymptomatisch zijn, maar een voorbeschikking geven tot het ontwikkelen van een aorta dissectie en ruptuur. Deze rupturen gaan gepaard met een hoge mortaliteit. In 2016 heb ik loss-of-function (LOF) mutaties in BGN, een X-gebonden gen, geïdentificeerd als nieuwe oorzaak van een ernstige, syndromale vorm van thoracale aorta aneurysma's en dissecties (TAAD) en deze aandoening wordt nu het Meester-Loeys syndrome (MLS) genoemd. In parallel met mijn observaties in aneurysmale fenotypes, werden missense mutaties in BGN beschreven als nieuwe oorzaak van een X-gebonden vorm van spondylo-epi-metaphyseale dysplasie (X-SEMD). Het algemene doel van dit project is het ontrafelen van de onderliggende mechanismen van verschillende BGN mutaties in de ontwikkeling van twee zeer verschillende fenotypes: syndromale TAAD (MLS) en X-SEMD. We trachten de pathomechanismen verder te ontrafelen door een gedetailleerde fenotypische karaktersiatie en transcriptomics-experimenten in mannelijke BALB/cA knock-out (LOF) en knock-in (gain-of-function?) muismodellen, respectievelijk.

Onderzoeker(s)

Onderzoeksgroep(en)

Nieuwe uitdaging voor Brugada syndroom onderzoek: identificatie van genetische modificerende factoren. 01/04/2019 - 30/03/2020

Abstract

Brugada syndroom (BrS) is een autosomaal dominante elektrische aandoening van het hart, die gekarakteriseerd wordt door ventrikel aritmieën en een significant risico op plotse hartdood. Het veroorzaakt tot 20% van de gevallen van plotse hartdood in mensen jonger dan 45 jaar met een structureel normaal hart. Momenteel zijn meer dan 25 genen, inclusief het SCN5A gen, geassocieerd met BrS, maar mutaties in deze genen worden slechts in 30% van de patiënten gevonden. Een ander belangrijk onopgelost aspect van BrS is de opmerkelijke variabiliteit in expressie van de ziekte, van een volledig asymptomatisch verloop over milde aritmie tot plotse hartdood, dat zelfs binnen families met eenzelfde mutatie terug te vinden is. Genetische modificerende factoren moeten een belangrijke rol spelen in dit fenomeen en de identificatie van zulke modifiers is het doel van dit project. Ik zal hiervoor gebruik maken van een unieke verzameling BrS families met een Belgische founder mutatie in SCN5A die via onze cardiogenetica kliniek gerecruteerd werden en duidelijke variabele expressiviteit vertonen. Vier asymptomatische mutatiedragers en vier mutatiedragers met ernstig fenotype werden zorgvuldig geselecteerd voor volledige genoom en RNA sequenering. Dit laatste zal ik uitvoeren op RNA geïsoleerd uit cardiomyocyten gederiveerd uit geïnduceerde pluripotente stamcellen van deze mutatiedragers, een zeer innovatief celmodel. Combinatie van deze genoom en transcriptoom data in een zeer weldoordachte analyse, zal me zeker in staat stellen om de modificerende genen te identificeren die aan de basis liggen van de geobserveerde intra-familiale fenotypische variabiliteit. Dit resultaat zal leiden tot een significant verbeterd inzicht in de mechanismen die BrS veroorzaken, de ontwikkeling van nieuwe therapieën stimuleren en een accuratere risico stratificatie en gepersonaliseerde aanpak van BrS patiënten mogelijk maken.

Onderzoeker(s)

Onderzoeksgroep(en)

Onderzoeksovereenkomst financiering doctoraatsonderzoek Marinus Verbeek. 01/04/2019 - 30/09/2019

Abstract

Met dit project wordt beoogd om het gendefect te achterhalen in twee families met een autosomale dominante vorm van spondylocostale dysostosis. Voorafgaand werd in deze families een mutatie in één van de gekende causale genen voor deze aandoening reeds uitgesloten.

Onderzoeker(s)

Onderzoeksgroep(en)

Optische mapping van in vivo mechanismen van het zebravishart: exploratie van de pathogenese en overerving van catecholaminerge polymorfe ventriculaire tachycardie. 01/10/2018 - 30/09/2020

Abstract

Plotse hartdood wordt bij jonge mensen voornamelijk veroorzaakt door overerfbare hartziekten. Mutaties in genen die zorgen voor een normale hartslag, liggen hier vaak aan de oorzaak. Er zijn reeds verschillende genen geïdentificeerd die plotse hartdood veroorzaken. Maar voor een groot deel van de patiënten, zijn de genetische test niet conclusief omdat er een genetische variant met ongekende betekenis wordt geïdentificeerd (zogenaamde VUS). In dit project, wil ik een nieuwe model ontwikkelen om het effect van deze mutaties op het hart in vivo te bestuderen. Hiervoor zal ik een nieuwe zebravislijn ontwikkelen waarbij de elektrische signalen en chemische calcium signalen in het hart worden omgezet naar fluorescente licht signalen. Zebravissen zijn de eerste dagen van hun leven doorzichtig waardoor dit diermodel zich er perfect toe leent om deze signalen te visualiseren in vivo. Ik zal het nieuwe ontwikkelde zebravismodel gebruiken om één specifieke cardiale aandoening beter te begrijpen, namelijk catecholaminergische polymorfische ventriculaire tachycardie (CPVT). Deze aandoening wordt gekenmerkt door abnormale calcium signalisatie in het hart waardoor mijn methode uiterst geschikt is om CPVT te bestuderen. Zowel in de literatuur als in onze eigen Cardiogenetica Kliniek, zijn reeds verschillende CPVT families geïdentificeerd met een onduidelijk overerfpatroon. Met mijn assay zal ik de mechanismen van CPVT in deze families kunnen blootleggen, de resultaten van de genetische testen kunnen verduidelijken en hierdoor dus bijdragen tot een verbeterde diagnostische screening voor CPVT.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontrafelen van de onderscheidende pathomechanismen voor biglycan gerelateerde aortopathie en spondylo-epi-metafysaire dysplasie. 01/10/2018 - 30/09/2019

Abstract

De aorta is de belangrijkste arterie en voorziet de rest van het lichaam van zuurstofrijk bloed. Een dilatatie van de thoracale aorta leidt tot de ontwikkeling van thoracale aorta aneurysma's (TAA). Deze verwijdingen zijn vatbaar voor bloedvatscheuren welke vaak tot plotse dood leiden. In 2016 heb ik BGN (Biglycan) geïdentificeerd als nieuwe oorzaak van een ernstige vorm van TAA en deze aandoening wordt nu Meester-Loeys syndroom (MLS) genoemd. In parallel met mijn observaties werden andere mutaties in BGN beschreven als de oorzaak van X-gebonden spondylo-epi-metafysaire dysplasie (X-SEMD), die gekenmerkt wordt door een klein gestalte. Op basis van de huidige kennis is het onduidelijk welke mechanismen verklaren waarom sommige mutaties in BGN leiden tot X-SEMD en anderen tot MLS en waarom alleen MLS patiënten met BGN deletie een mild skeletaal fenotype ontwikkelen. Dit project heeft als doel deze vragen te beantwoorden door middel van de volgende objectieven: (1) karakterisatie van het fenotype en het pathomechanisme van muismodellen voor TAA en X-SEMD, (2) de verificatie van de functionele verschillen tussen BGN mutaties die MLS versus X-SEMD veroorzaken in een humaan celmodel en (3) de identificatie van de rol van een alternatieve splice-vorm van het biglycan eiwit in de ontwikkeling van skeletale kenmerken in MLS.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontrafeling van de pathofysiologie van SMAD6-geassocieerde bicuspide aortaklep en thoracale aorta aneurysmata. 01/04/2018 - 31/03/2019

Abstract

Bicuspide aortaklep (BAV) wordt gekarakteriseerd door een aortaklep met slechts twee klepblaadjes in plaats van de normale drie. Het heeft een geschatte prevalentie van 1-2% en is daarmee de meest frequente congenitale hartafwijking. Hoewel de meeste BAV individuen asymptomatisch blijven doorheen het leven, ontwikkelt tot 30% van deze personen ernstige cardiovasculaire complicaties, waaronder thoracale aorta aneurysmata (TAA) en dissecties. Deze laatsten gaan met significante morbiditeit en mortaliteit gepaard. BAV/TAA vormt momenteel een aanzienlijk probleem voor onze gezondheidszorg omwille van de hoge BAV frequentie en het feit dat efficiënte farmacologische therapieën voor (BAV-gerelateerde) TAA niet voorhanden zijn. Recent identificeerden wij een aanrijking aan schadelijke SMAD6 varianten in BAV/TAA patiënten ten opzichte van de algemene populatie. SMAD6 komt sterk tot expressie in het cardiovasculair stelsel en codeert voor een inhiberend SMAD eiwit dat zowel BMP als TGF-β signalisatie negatief reguleert, dewelke beiden reeds eerder met ontwikkeling van de aortaklep en aneurysmavorming gerelateerd werden. Dit project bouwt verder op onze genetische SMAD6 data en heeft als doel de kennis omtrent de BAV/TAA pathomechanismes significant te verbeteren door de moleculaire factoren en processen die SMAD6 deficiëntie koppelen aan aortaklep- en aortawandafwijkingen te identificeren. Hiervoor zullen we gebruik maken van aortaklep- en aortawandweefsel van het Madh6-/- muismodel. De resultaten van dit project worden verwacht tot de identificatie van nieuwe therapeutische doeleiwitten te leiden en bijgevolg 'drug compound testing' in Madh6-/- muizen te mediëren.

Onderzoeker(s)

Onderzoeksgroep(en)

Grensverleggend onderzoek naar de genetische modifiers die aan de grondslag liggen van variabele aortopathie expressiviteit. 01/10/2017 - 30/09/2021

Abstract

Thoracale aorta aneurysma's (TAAs) zijn het gevolg van progressieve dilatatie van de thoracale aorta. Ze leiden frequent tot aortadissecties en aortarupturen, dewelke met een mortaliteit van 50% gepaard gaan. TAAs vertegenwoordigen bijgevolg een prominente oorzaak van morbiditeit en plotse dood in de Westerse populatie. Gedurende de voorbije 25 jaar hebben extensieve studies meer dan 25 genen geïdentificeerd waarin mutaties tot familiale vormen van TAA leiden. Functionele karakterisatie van deze genen wees abnormale extracellulaire matrix homeostase, transformerende groeifactor-β signalisatie en vasculaire gladde spiercel contractiliteit aan als erg belangrijke ziekte-gerelateerde processen. Ontwikkeling van nieuwe therapeutische strategieën vergt echter een nog betere en gedetailleerdere pathogenetische en pathomechanistische kennis. Omwille van de recente beschikbaarheid en snelle evolutie van de zogenaamde 'next-generation sequencing technologies', anticiperen we eerder eenvoudige identificatie van de overige genetische TAA-oorzaken in de komende jaren. Gegeven het feit dat TAA gekarakteriseerd wordt door significant verminderde penetrantie en variabele expressiviteit, vormen 'modifier' studies nu een belangrijk en uitdagend nieuw parcours in het genetisch TAA veld. In dit project gaan we op zoek naar de genetische 'modifiers' die de fenotypische variabiliteit kunnen verklaren die optreedt in geselecteerde families met autosomaal dominante syndromale TAA, meer bepaald met het Loeys-Dietz syndroom. Innovatieve technologieën zoals genoom-sequenering en creatie van geïnduceerde pluripotente stamcellen zullen hiervoor gebruikt worden. De verwachte resultaten zullen de huidige TAA-kennis significant uitbreiden, genetische 'counseling' substantieel verbeteren, en ongeëvenaarde mogelijkheden bieden wat de ontwikkeling van nieuwe therapeutische strategieën betreft.

Onderzoeker(s)

Onderzoeksgroep(en)

Genen in connectie brengen met zeldzame aandoeningen met behulp van de nieuwe generatie sequeneringsgtechnologie en vooruitgang in onderwijsmethoden (NGeneS) 01/09/2017 - 31/08/2020

Abstract

Met dit internationaal project beogen we om bij jonge wetenschappers kennis bij te brengen over de nieuwe generatie sequeneringstechnologie door gebruik te maken van nieuwe onderwijsmethoden zoals e-learning en dit met focus op zeldzame en genetische aandoeningen van het skelet. We willen ook de kennis omtrent zeldzame botaandoeningen verhogen en tevens de diagnose bevorderen door gebruik te maken van de faciliteiten ons ter beschikking gesteld door BOND, een nieuw Europees Referentienetwerk voor zeldzame botaandoeningen.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontwikkeling van een nieuw transgeen zebravismodel om de pathogeniciteit te bepalen van genetische varianten voor cardiale aritmieën. 01/04/2017 - 31/03/2018

Abstract

Overerfbare cardiale aritmieën (ICA), zoals lange QT syndroom (LQTS) en Brugada syndroom (BrS), zijn een groep van overerfbare aandoeningen waarbij patiënten een onregelmatig hartritme hebben (zogenaamde hartritmestoornissen). Deze zijn het gevolg van verstoorde elektrische dynamieken in het hart. Deze perioden kunnen onopgemerkt voorbij gaan maar kunnen ook leiden tot plotse cardiale dood. Tot op heden zijn er meer dan 50 genen beschreven die ICA kunnen veroorzaken. Dankzij de komst van de next generation sequeneringstechnologie is het mogelijk om al deze genen tegelijkertijd te testen in verschillende ICA patiënten in één experiment. Enerzijds laat dit ons toe om pathogene genetische veranderingen te identificeren, maar anderzijds heeft dit ons ook geconfronteerd met het feit dat het genoom een groot aantal genetische veranderingen bevat waarvoor het onzeker is of ze bijdragen tot het phenotype of niet (zogenaamde "varianten met ongekende betekenis"). Om deze reden is er een hoge nood aan een fysiologisch relevant functionele tool om de pathogeniteit van deze varianten te testen. Door twee state-of-the-art technieken te combineren, namelijk genetisch gecodeerde voltage indicatoren (GEVI) en enkel vlak verlichting microscopie (SPIM), zal ik een nieuwe tool ontwikkelen die ons toelaat om het cardiale conductiesysteem en zijn anatomische connectiviteit te bestuderen in zebravis aan een ongeziene resolutie. Door de elektrische signalen in het zebravishart om te zetten naar fluorescente signalen, zal ik aan de hand van deze tool actiepotentialen optisch kunnen mappen zowel in het volledige hart als op het niveau van de individuele cel. Dit laat me toe om de cardiale conductiesnelheid te bepalen en vertragingen in conductie op te sporen, wat dit een nieuwe en uiterst geschikte tool maakt om de elektro- en pathofysiologische mechanismen te onderzoeken van twee aritmie gerelateerde syndromen, LQTS en BrS. Uiteindelijk zal deze functionele test aangewend worden om de pathogeniteit te bepalen van genetische varianten met ongekende klinische betekenis.

Onderzoeker(s)

Onderzoeksgroep(en)

Opheldering van de moleculaire mechanismes die aan de basis liggen van thoracale aorta aneurysmata en dissecties. 01/01/2017 - 31/12/2020

Abstract

Expansie van de thoracale aorta (aneurysma's; TAA) gaat gepaard met een significant risico op aorta dissecties/rupturen. Deze laatsten kunnen tot ernstige interne bloedingen leiden, vaak met de dood tot gevolg. Tot op heden werden reeds meer dan 20 TAA-genen geïdentificeerd. Desalniettemin is het genetische en mechanistische ziekteplaatje nog lang niet compleet, wat de ontwikkeling van beloftevolle diagnostische tools en therapieën bemoeilijkt. Dit project heeft als doel de pathomechanistische TAA puzzel verder op te lossen aan de hand van de identificatie en functionele karakterisatie van nieuwe protectieve en risico-verhogende TAA-genen. Sterke argumenten wijzen erop dat ten minste één nog te identificeren TAA-gen op het X-chromosoom ligt. Recent identificeerde onze onderzoeksgroep inderdaad een nieuw X-gebonden gen, biglycan (BGN). Interessant genoeg blijken enkele muisstammen over een intrinsieke beschermende factor voor BGN-gerelateerde TAA te beschikken. Wij zullen deze protectieve factor bepalen, en vervolgens nagaan of dit protectief effect ook naar de mens getransleerd kan worden. Het tweede genetische luik van dit project bouwt verder op de observatie dat vrouwen met het syndroom van Turner (TS), dewelke de korte arm van het X-chromosoom of het volledige X-chromosoom missen, opvallend frequent met TAA presenteren. De reeds gekende X-gebonden TAA-genen bevinden zich echter allen op de lange arm van het X-chromosoom. Bijgevolg ambiëren we een nieuw Xp-gebonden TAA gen te identificeren via X-chromosoom sequenering in TS vrouwen. Ten slotte zal aan de hand van patiëntstalen en transgene cel- en diermodellen het pathophysiologisch effect van de gevonden ziekte-gerelateerde varianten functioneel nagegaan worden, met als doel de reeds opgehelderde ziekte-pathways verder te karakteriseren, of er zelfs nieuwe te ontdekken.

Onderzoeker(s)

Onderzoeksgroep(en)

Genomische en innovatieve modelering van geïnduceerde pluripotente stamcellen (iPSC) om een beter inzicht te krijgen in de pathomechanismen van Brugada syndroom (BrS). 01/01/2017 - 31/12/2020

Abstract

Brugada syndroom is een erfelijke hartaandoening, welke zich presenteert met hartritmestoornissen. Vaak verloopt de aandoening asymptotisch en kan dus volledig onopgemerkt verlopen. Toch treed er soms toch plotse dood op, meest typisch bij patiënten tussen 25 en 55 jaar. De eerste graadsverwanten hebben ook een risico van 50% om aangetast te zijn. Alhoewel er al verschillende genen geïdentifceerd zijn die aan de basis liggen van Brugada syndroom, is bij 75% van de patiënten de oorzaak onbekend. Dit project gaat op zoek naar nieuwe genetische oorzaken van Brugada syndroom in 10 Brugada families. In deze families zullen we telkens 3 individuen genoomsequeneren en in de grootste families zullen we ook koppelingsonderzoek uitvoeren. Na genetische identificatie van nieuwe oorzaken van Brugada syndroom zullen we deze functioneel karakteriseren in geïnduceerde pluripotente stamcellen. Dit laat toe om de hartomgeving te "simuleren" en in vitro het effect van de mutaties te bestuderen. Dit zal leiden tot een beter moleculair inzicht in de onderliggende mechanismes van Brugada syndroom met als doel betere behandelingsstrategieën en beter risicopredictie te voorzien.

Onderzoeker(s)

Onderzoeksgroep(en)

Erfelijke hartritmestoornissen: identificatie van nieuwe genen en de ontwikkeling van een diagnostische tool die de vertaling van een genetische diagnose in een gepersonaliseerde klinische aanpak toelaat. 01/01/2017 - 31/12/2020

Abstract

Erfelijke hartritmestoornissen (ICA) zijn een groep van voornamelijk autosomaal dominante aandoeningen die gekenmerkt worden door een verstoorde actiepotentiaal in het hart die kan leiden tot plotse dood op jonge leeftijd. Hoewel er momenteel al meer dan 50 genen geassocieerd werden met ICA, blijft de precieze genetische oorzaak ongekend in ongeveer 70% van de patiënten. Bovendien zijn deze erfelijke hartritmestoornissen genetisch en fenotypisch heterogeen en in een moleculair diagnostische setting worden veel varianten met onzekere pathogene betekenis gedetecteerd. Dit belemmert een juiste risico inschatting en daarmee ook efficiënte preventief en therapeutisch beleid van de patiënt. In een unieke interfacultaire samenwerking tussen het Centrum Medische Genetica, het Departement Cardiologie, het Laboratorium voor Experimentele Hematologie en het Laboratorium voor Moleculaire Biofysica, Fysiologie en Farmacologie, beogen wij deze noden aan te pakken in een project met twee hoofddoeleinden: de identificatie van nieuwe causale genen voor ICA en de ontwikkeling van een diagnostische tool die toelaat het effect van genetische varianten functioneel fenotypisch te karakteriseren. Het eerste doel zal bereikt worden aan de hand van koppelingsstudies en genoomsequenering in klinisch goed gekarakteriseerde maar genetisch onopgeloste families. Genidentificatie wordt gevolgd door functionele karakterisatie van de kandidaat-varianten. Het tweede doel zal gerealiseerd worden door middel van de constructie en elektrofysiologische karakterisatie van heterologe expressiesystemen en cardiomyocyten gedifferentieerd uit patiënt specifieke geïnduceerde pluripotente stamcellen (iPSC-CM). Als een proof-of-principle zullen we vertrekken van fibroblasten van familieleden met dezelfde identieke SCN5A founder mutatie maar verschillende fenotypische ernst en nadien zullen we ook SCN5A varianten van onbekende betekenis bestuderen in het iPSC-CM model. Deze weloverwogen aanpak in combinatie met de expertise van de verschillende deelnemende onderzoeksgroepen zal ons zeker in staat stellen om de verwachte doeleinden van dit project te bereiken. Zo kan een genetische diagnose in een groter aantal ICA families gesteld worden en vertaald worden in een gepersonaliseerde functionele interpretatie van het genetische resultaat in patiënten en familieleden. Dit laat toe om een juiste risico inschatting te maken, correcte individuele klinische beslissingen te nemen en preventieve of therapeutische middelen efficiënt te gebruiken.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontrafeling van de rol van het X-chromosoom in de pathogenese van thoracale aorta aneurysma's en dissecties. 01/10/2016 - 30/09/2019

Abstract

De aorta fungeert als de verantwoordelijke ader voor bloeddistributie van het hart naar alle distale delen van het lichaam. Expansie van de thoracale aorta (aneurysma's; TAA) kan tot aorta dissecties of rupturen leiden, dewelke met ernstige interne bloedingen geassocieerd zijn en vaak in plotse dood resulteren. Aangezien verwanten van TAA patiënten eveneens een significant verhoogd risico op het ontwikkelen van de ziekte hebben, spelen genetische defecten een prominente rol in het ziekteproces. Verschillende argumenten suggereren dat ten minste één TAA-veroorzakend gen op het X-chromosoom gelokaliseerd is, zo is TAA bijvoorbeeld frequenter in mannen (~hebben per definitie maar één X-chromosoom) en in vrouwen met het Turner syndroom (TS, ~veroorzaakt door gedeeltelijke of volledige deletie van één X-chromosoom). Recent identificeerden we in onze groep TAA-veroorzakende genetische defecten in het biglycan (BGN) gen, een gen dat op de lange arm van het X-chromosoom gelokaliseerd is. Dit project bouwt gedeeltelijk verder op deze bevinding. Het doel is namelijk om (1) de rol van BGN promotor variatie in niet-syndromale TAA patiënten op te helderen, (2) de downstream consequenties van verlies aan BGN te bepalen en (3) een genetische modifier voor BGN-gerelateerde TAA in muis te identificeren. Aangezien voornamelijk TS patiënten zonder korte arm van het X-chromosoom (Xp) frequenter met TAA presenteren, is het erg waarschijnlijk dat er ook nog een Xp-gebonden TAA-gen bestaat. Bijgevolg omvat doel (4) van dit project identificatie van een Xp aortopathiegen gebruikmakend van X-chromosoom sequenering in TS meisjes.

Onderzoeker(s)

Onderzoeksgroep(en)

Verbeterde zorg voor cohesionpathies: van hart fenotype naar nieuwe therapieën (CoHEART). 01/05/2016 - 30/04/2019

Abstract

Opdat humane cellen kunnen groeien, delen en zich ontwikkelen, moeten ze de genetische code correct lezen en interpreteren. Dit proces wordt gemedieerd door eiwitten die tot het cohesinecomplex behoren. Personen waarin deze eiwitten gemuteerd zijn ontwikkelen diverse zeldzame aandoeningen, cohesinopathieën genaamd. Cohesinopathieën worden vaak fenotypisch gekarakteriseerd door cardiovasculaire afwijkingen, alsook ontwikkelingsstoornissen, vertraagde groei, etc. In dit project zullen we specifiek twee cohesinopathieën die het hart aantasten bestuderen, namelijk het Cornelia de Lange syndroom (CdLS) en het "Chronic Atrial and Intestinal Dysrhythmia" (CAID) syndroom. Het ultieme doel van dit project is beter te begrijpen wat deze ziektes op het moleculaire niveau gemeenschappelijk hebben, en wat hen van elkaar onderscheidt. Specifieker, zullen we hiervoor de volgende stappen ondernemen: 1) We zullen patiënt- en controle-afgeleide cellulaire ziektemodellen creëren, waarin we de onderdelen van het genetisch circuit die niet correct functioneren op celniveau zullen bepalen. 2) We zullen transgene diermodellen bestuderen met dezelfde mutaties als diegene die we in patiënten identificeerden. Dit zal ons toelaten onderdelen van het genetisch circuit die niet correct functioneren op organismeniveau te bepalen. 3) We zullen interactiepartners van de gekende genen die het fenotype verergeren of verbeteren op celniveau identificeren. Deze resultaten zullen ons helpen deze groep van zeldzame, doch erg ernstige aandoeningen, beter te begrijpen. Bovendien zullen ze op termijn toelaten nieuwe medicijnen op een doordachtere manier te ontwikkelen.

Onderzoeker(s)

Onderzoeksgroep(en)

Identificatie van nieuwe genetische varianten die een causale rol spelen in Brugada syndroom 01/04/2016 - 31/03/2017

Abstract

Brugada syndroom (BrS) is een autosomal dominante hartaandoening gekenmerkt door hartritmestoornissen en een hoog risico op plotse dood. De prevalentie van BrS is 1 op 2000 in de algemene bevolking. Omdat het stellen van een klinische diagnose soms moeilijk is, heeft genetisch testen een belangrijke toegevoegde waarde, maar in 70% van de gevallen is de genetische oorzaak ongekend. Het doel van dit project is dan ook nieuwe genetische varianten te identificeren die betrokken zijn bij BrS. Van twee goed gekarakteriseerde families waarin geen mutatie werd gevonden in alle tot hiertoe bekende aritmie genen, zullen we 11 BrS patiënten en 15 gezonde familieleden aan de hand van een SNP-array genotyperen, en deze data gebruiken voor een koppelingsanalyse. Van vijf patiënten zal ook het volledige genoom gesequeneerd worden om alle mogelijke coderende, niet-coderende en structurele varianten te kunnen bestuderen, met een focus op de gedeelde varianten in de gekoppelde genomische kandidaatregio's. Deze weloverwogen opzet, in combinatie met de beste bioinformatica analysemethoden, zal ons in staat stellen om nieuwe causale genetische varianten voor BrS te vinden binnen de looptijd van dit project. De nieuwe BrS genen zullen meteen in ons bestaande diagnostische aritmie gen panel geïncorporeerd worden, waardoor directe toepassing in de kliniek wordt verzekerd met betere risico inschatting, genetische counseling en preventie van plotse dood tot gevolg. Analyse van de functie van het nieuwe gen op niveau van pathways en de cel, zal de pathogenetische mechanismen aan de basis van BrS en waarschijnlijk ook andere hartritmestoornissen helpen ophelderen en uiteindelijk leiden tot de ontwikkeling van betere therapieën.

Onderzoeker(s)

Onderzoeksgroep(en)

De zoektocht naar X-gebonden aortopathiegenen in patiënten met het syndroom van Turner 01/04/2016 - 31/03/2017

Abstract

Bicuspide aortaklep (BAV) is de meest voorkomende congenitale hartafwijking. Ondanks het intrinsiek asymptomatische karakter van de aandoening, gaat ze gepaard met thoracale aorta aneurysma's (TAA) en dissecties die met een hoge mortaliteit geassocieerd zijn. BAV en TAA worden opvallend frequent bij het syndroom van Turner (TS) waargenomen. Deze ziekte treft ongeveer 1 op 2500 levend geboren meisjes en wordt door een partiële of volledige deletie van 1 X-chromosoom veroorzaakt. Een mogelijke mechanistische verklaring voor de hoge BAV/TAA prevalentie in TS omvat het voorkomen van risico-verhogende mutaties in een aortopathie gen op het resterende X-chromosoom. Om zulke X-gebonden aortopathie-genen te identificeren, zullen we alle coderende regio's van het X-chromosoom in 22 TS patiënten met BAV en 10 tricuspide TS patiënten sequencen. Bijkomende genetische evidentie voor de geïdentificeerde kandidaatgenen zal verkregen worden door sequencing van hun coderende sequenties in additionele TS/BAV individuen, alsook in een kleine niet-syndromale mannelijke BAV/TAA cohorte. De verwachtte experimentele bevindingen zullen bijdragen aan moleculair diagnostische toepassingen, genetische counseling of klinische follow-up van BAV/TAA-families en, door het verkrijgen van nieuwe inzichten in de pathomechanismes, ontwikkeling van preventieve en gepersonaliseerde therapieën.

Onderzoeker(s)

Onderzoeksgroep(en)

Exploratie van de genetische basis van thoracale aorta aneurysma's met focus op de bicuspide aorta klep gerelateerde aortopathie. 01/10/2015 - 30/09/2020

Abstract

Bicuspide aortaklep, gedefinieerd als een hartklep die slechts twee klepblaadjes heeft in plaats van de normale drie, is met een prevalentie van 1-2% de meest frequente congenitale hartafwijking. De aandoening blijft meestal onopgemerkt, maar in ten minste 10% van de patiënten ontwikkelen thoracale aorta aneurysmata zich. Wanneer deze laatsten niet op tijd ontdekt worden, kunnen ze tot aorta dissecties leiden, dewelke met een erg hoge mortaliteit gepaard gaan. Omwille van de hoge prevalentie, representeert deze aandoening dus een belangrijk probleem voor onze gezondheidszorg. Vroeger werd aangenomen dat abnormale stroming van het bloed als gevolg van de bicuspide klep aan de grondslag van aneurysmavorming lag. Ondertussen hebben erfelijkheidsstudies echter aangetoond dat genetische defecten zowel het klepdefect als het aneurysma kunnen verklaren. Overerving van deze cardiovasculaire manifestaties gebeurt doorgaans volgens een autosomaal dominant model. Variabele penetrantie en expressiviteit zijn gebruikelijk, wat identificatie van causale genen bemoeilijkt. Dankzij een nieuwe generatie sequeneringsmethodes kunnen we dit euvel echter overkomen. Door middel van state-of-the-art DNA sequeneringsmethodes, miRNA profilering en onderzoek naar de betrokken signalisatie pathways, zal dit project significant bijdragen aan de opheldering van de genetische oorzaken van bicuspide aortaklep-geassocieerde aortopathie. Bovendien zal essentiële kennis aangaande de pathogenese van aorta aneurysmata onthuld worden en nieuwe therapeutische targets aangeleverd worde.

Onderzoeker(s)

Onderzoeksgroep(en)

Ondersteuning instandhouding wetenschappelijke apparatuur (Medische Genetica). 01/01/2015 - 31/12/2020

Abstract

Via BOF wordt het onderhoud van onze NGS toestellen (MiSeq en HiSeq1500) gedeeltelijk gefinancierd. Deze toestellen zijn verworven met Hercules financiering. Ze laten de nieuwe generatie sequeneringstechnologie toe voor research.

Onderzoeker(s)

Onderzoeksgroep(en)

GENOMED - Genomica in de geneeskunde. 01/01/2015 - 31/12/2019

Abstract

Dit project kadert in een onderzoeksopdracht toegekend door de Universiteit Antwerpen. De promotor levert de Universiteit Antwerpen de onderzoeksresultaten genoemd in de titel van het project onder de voorwaarden zoals vastgelegd door de universiteit.

Onderzoeker(s)

Onderzoeksgroep(en)

Identificatie en karakterisatie van genen betrokken bij bicuspide aortaklep-geassocieerde aortopathie. 01/01/2015 - 31/12/2018

Abstract

De bicuspide aortaklep (BAV) is met een prevalentie van 1–2% de meest voorkomende congenitale hartafwijking. Tien tot twintig procent van de BAV patiënten ontwikkelen thoracale aorta-aneurysma's (TAA). Wanneer TAA niet behandeld worden, kunnen deze leiden tot levensbedreigende aorta dissecties en –rupturen. Het is daarom van essentieel belang om TAA tijdig te identificeren in BAV patiënten, om de progressie continu op te volgen en om ze te behandelen. Het algemeen doel is om de genetische basis van BAV/TAA te identificeren, de geïdentificeerde genen te karakteriseren en de pathogenese op te helderen.

Onderzoeker(s)

Onderzoeksgroep(en)

Ma.Tr.OC - Identificatie van moleculaire therapeutische doeleinden en diagnostische/prognostische biomerkers voor de maligne transformatie van osteochondromas. 01/04/2014 - 31/03/2017

Abstract

Dit project betreft fundamenteel kennisgrensverleggend onderzoek gefinancierd door het Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. Het project werd betoelaagd na selectie door het bevoegde FWO-expertpanel. De moleculaire basis van perifeer chondrosarcoma ontwikkleing is tot op heden onbekend. Het ontbreekt thans aan prognostische markers en een mogelijke therapeutisch alternatief voor de huidige chirurgische behandeling. Dit project heeft tot doel de onderliggende pathways van perifere chondrosarcoma ontwikkeling in patiënten met multipele osteochondromen te ontrafelen en eventuele prognostische markers te identificeren.

Onderzoeker(s)

Onderzoeksgroep(en)

Systeembiologie voor de validatie van genetische determinanten van skeletaandoeningen (SYBIL). 01/10/2013 - 30/09/2018

Abstract

Dit project kadert in een onderzoeksopdracht tussen enerzijds UA en anderzijds EU. UA levert aan EU de onderzoeksresultaten genoemd in de titel van het project onder de voorwaarden zoals vastgelegd in voorliggend contract.

Onderzoeker(s)

Onderzoeksgroep(en)

De (patho)genetische studie van bicuspide aortaklep en geassocieerd aorta aneurysma 01/10/2013 - 30/09/2016

Abstract

Bicuspide aortaklep (BAV), een aortaklep bestaande uit twee in plaats van drie kleppen, is de meest voorkomende congenitale hartafwijking met een prevalentie van 1 tot 2% in de algemene populatie. Deze hartafwijking blijft vaak asymptomatisch, nochtans kunnen aneurysma's in de ascenderende aorta ontwikkelen in 10-20% van de BAV patiënten. Wanneer dit niet tijdig opgemerkt wordt, bestaat de kans op aorta dissectie wat fataal kan zijn. Door de prevalente aard van de aandoening vormt BAV een belangrijk gezondheidsprobleem. Historisch werd gedacht dat de abnormale bloedstroom in de bicuspide aortaklep leidde tot aneurysma vorming. Maar recent is gebleken dat de genetische contributie zeer belangrijk is en men gaat er nu vanuit dat dezelfde genetische factoren bijdragen tot de ontwikkeling van de klepafwijking en de vorming van aorta aneurysma's. Het erfelijkheidspatroon is het meest consistent met een autosomaal dominante aandoening met variabele penetrantie en expressiviteit. In dit project wordt gefocust op twee doelen. Ten eerste zullen we de potentiële contributie van de canonische en niet-canonische TGFβ signaalcascades in BAV onderzoeken, welke sterk betrokken zijn in Marfan-gerelateerde aorta aneurysma's. Daarnaast willen we de genetische basis van BAV identificeren door gebruik te maken van een state-of-the-art techniek: whole exome sequencing.

Onderzoeker(s)

Onderzoeksgroep(en)

Bicuspide-gerelateerde aortopathie, een krachtige verkenning (BRAVE). 01/05/2013 - 30/04/2018

Abstract

Dit project kadert in een onderzoeksopdracht tussen enerzijds UA en anderzijds EU. UA levert aan EU de onderzoeksresultaten genoemd in de titel van het project onder de voorwaarden zoals vastgelegd in voorliggend contract.

Onderzoeker(s)

Onderzoeksgroep(en)

Mechanistische analyse van bicuspide aortaklep -gerelateerde aortapathie. 01/01/2013 - 31/12/2018

Abstract

Dit project kadert in een onderzoeksopdracht tussen enerzijds UA en anderzijds Fondation LEDUCQ. UA levert aan Fondation LEDUCQ de onderzoeksresultaten genoemd in de titel van het project onder de voorwaarden zoals vastgelegd in voorliggend contract.

Onderzoeker(s)

Onderzoeksgroep(en)

Onderzoek van de genetische basis en de pathogenische mechanismen betrokken bij bicuspiede aorta klep geassocieerd thoracaal aorta aneurysmanon. 01/10/2012 - 30/09/2016

Abstract

Een bicuspiede aorta klep is het meest voorkomende congenitale hart defect. Het is geassocieerd met aneurysmafs van de aorta ascendens waardoor het een belangrijk gezondheidsprobleem vormt. Het overervingspatroon is meest suggestief voor een autosomaal dominante aandoening met variabele penetrantie en expressiviteit. In dit project zullen we de genetische basis identificeren aan de hand van copy number variation analyse en whole exome sequencing en de potentiele contributie van TGFβ signalisatie cascades onderzoeken.

Onderzoeker(s)

Onderzoeksgroep(en)

De (patho)genetische studie van bicuspide aortaklep en geassocieerd aorta aneurysma. 01/10/2012 - 30/09/2013

Abstract

Bicuspide aortaklep (BAV) is één van de meest voorkomende aangeboren hartafwijkingen met een geschatte prevalentie van 1-2%. Deze afwijking blijft meestal asymptomatisch, maar ascenderende aorta aneurysma's kunnen ontwikkelen in 10-20% van de gevallen. Momenteel gaat men ervan uit dat dezelfde genetische factor van toepassing is op de ontwikkeling van een klepafwijking en de vorming van een thoracaal aorta aneurysma (TAA). Eén van de belangrijkste doelen van dit project is dan ook identificatie van de genetische basis van BAV/TAA, dit door middel van "next generation sequencing".

Onderzoeker(s)

Onderzoeksgroep(en)

Plotselinge hartfalen: het omzetten van genetische technologie naar verbeterde klinische zorg. 01/09/2012 - 31/08/2014

Abstract

De hoofddoelstelling van dit project is de toepassing van nieuwe genetische technologie in de preventie, diagnose en behandeling van patiënten en familieleden met risico voor plotse dood (SCD, door aorta aneurysma's (TAA), primaire elektrische aandoeningen (PED) en cardiomyopathieën (CM). Om de projectdoelstellingen te bereiken, worden een aantal bestaande technologieën gecombineerd, protocols gevalideerd en geïmplementeerd en enkele sleutelprocessen van genetische counseling geëvalueerd.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontdekken van nieuwe grenzen voor biologisch en medisch onderzoek door "Next generation sequencing". 28/06/2012 - 31/12/2017

Abstract

Dit project beoogt om in een sterk samenwerkend verband tussen Antwerpse onderzoeksgroepen een "next generation sequencing" platform te ontwikkelen ter bevordering van research in geneeskunde en biologie. Het consortium omvat meer dan 16 onderzoeksgroepen uit verschillende disciplines in de geneeskunde, biologie en biomedische informatica. Identificatie van nieuwe genen en mutaties in een brede waaier van zeldzame Mendeliaanse aandoeningen, het verwerven van meer inzichten in de genetische oorzaken van kanker en het ontrafelen van de genetische basis van infectieziekten zijn belangrijke doelstellingen van het project. Deze nieuwe kennis zal in belangrijke mate bijdragen tot betere diagnostiek en behandeling van deze ziekten bij de mens. Het project zal ook de interactie tussen omgeving en genen bestuderen. De effecten van omgevingsfactoren op genetische variatie bij waterorganismen, het effect van teratogene factoren op de embryologische ontwikkeling van gewervelde dieren en de invloed van omgeving op groei van mais en Arabidopsis, zullen geanalyseerd worden. De verwerking van deze grote hoeveelheden genomische en transcriptomische data, verkregen vanuit de verschillende onderzoeksgroepen, zal gecoördineerd worden door de recent opgerichte UZA/UA bioinformatica onderzoeksgroep Biomina.

Onderzoeker(s)

Onderzoeksgroep(en)

Pathogenetische studie van de intersectie van twee frequente monogene aandoeningen: het Marfan syndroom en autosomaal dominante polykystische nierziekte. 01/01/2012 - 31/12/2015

Abstract

Dit project kadert in een onderzoeksopdracht tussen enerzijds UA en anderzijds IWT. UA levert aan IWT de onderzoeksresultaten genoemd in de titel van het project onder de voorwaarden zoals vastgelegd in voorliggend contract.

Onderzoeker(s)

Onderzoeksgroep(en)

Klinische en (patho)genetische studie van bicuspide aortaklep en geassocieerd aorta aneurysma. 01/01/2012 - 31/12/2015

Abstract

Dit project betreft fundamenteel kennisgrensverleggend onderzoek gefinancierd door het Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. Het project werd betoelaagd na selectie door het bevoegde FWO-expertpanel.

Onderzoeker(s)

Onderzoeksgroep(en)

Fysiopathologische en genetische studie van de intersectie van twee frequente monogene aandoeningen: het Marfan syndroom en autosomaal dominante polykystische nierziekte. 30/08/2011 - 29/08/2012

Abstract

De doelstellingen van dit project zijn: 1. De identificatie van het moleculaire defect in een familie waarin aorta aneurysma's en polykystische nierziekten samen segregeren. 2. Studie van de extracellulaire matrix en de rol van de canonieke en niet-canonieke TGFbeta signalisatie in aorta aneurysma's van polykystische nierpatiënten en muizenmodellen.

Onderzoeker(s)

Onderzoeksgroep(en)

Gen- en microRNA-ontdekking in de pathogenese van aorta-aneurysma's. 26/07/2011 - 25/07/2012

Abstract

Dit project kadert in een onderzoeksopdracht tussen enerzijds UA en anderzijds de Aneurysmal Pathology Foundation. UA levert aan Aneurysmal Pathology Foundation de onderzoeksresultaten genoemd in de titel van het project onder de voorwaarden zoals vastgelegd in voorliggend contract.

Onderzoeker(s)

Onderzoeksgroep(en)

Toepassing van exoom sequencing voor de identificatie van het genetische defect bij erfelijke bindweefsel aandoeningen 01/07/2011 - 31/12/2015

Abstract

Sinds de voltooiing van het humane genoom project in 2003 en de volledige ontrafeling van de code van het menselijke genoom, is het onderzoek in de medische genetica met rasse schreden vooruitgaan zowel op technologisch vlak als op het vlak van kennis. Een beter inzicht in de structuur en functie van het menselijke genoom heeft geleid tot de ontwikkeling van nieuwe onderzoeksmethodes die snel kunnen toegepast worden in studie van humane aandoeningen. Deze genetische revolutie heeft geleid tot de ontwikkeling van een geïndividualiseerde geneeskunde waarbij genetische informatie gebruikt wordt voor een betere diagnosestelling, behandeling en preventie van ziekten. In het verleden nam de identificatie van ziektegenen heel veel tijd en middelen in beslag en kon vaak enkel gebruik gemaakt worden van grote families met meerdere aangetaste individuen. Door middel van positionele clonering met koppelingsanalyse werden de verantwoordelijke genomische regio's geïdentificeerd binnen de familie. Nadien nam het vaak nog verschillende jaren in beslag om de causale variant (mutatie) in de genomische regio te vinden. Enkel nadat deze mutaties gevonden werden, kon onderzoek starten naar de ziekteveroorzakende mechanismes met als doel nieuwe aanknopingspunten voor behandelingsstrategieën te ontdekken. Over de laatste jaren leidde de ontwikkeling van een nieuwe sequeneringstechnologie tot een drastische daling van de kosten en een significante toename van de analyse snelheid. Met deze "volgende generatie sequeneringstechnologie" is het mogelijk geworden om het genoom van één enkel individu te analyseren. In dit project willen we deze technologie gebruiken om met behulp van "exoom" sequencing nieuwe genen te identificeren. Met deze toepassing concentreren we ons op het coderende deel van het genoom (het exoom) dat slechts 1% van het gehele humane genoom vertegenwoordigt maar naar schatting wel 85% van alle ziekteveroorzakende mutaties bevat. We willen deze nieuwe krachtige technologie implementeren om het proces van genidentificatie te versnellen zodat we ons onmiddellijk kunnen richten op een beter begrip van de pathogenese en zo de translatie naar de klinische zorg kunnen faciliteren. In de beginfase zullen we deze strategie gebruiken voor de studie van twee groepen aandoeningen waarvoor de promotoren een sterke klinische expertise hebben uitgebouwd, met name aneurysmata en skeletdysplasieën. De analysestrategieën die tijdens dit project geoptimaliseerd worden, kunnen later als een model dienen voor de studie van andere cardiovasculaire aandoeningen (bijvoorbeeld geleidingsstoornissen of cardiomyopathieën) of andere meer frequent voorkomende aandoeningen (zoals osteoarthrose of osteoporose) met complexe genetische basis. Bovendien zullen de bio-informatica toepassingen die tijdens dit project ontwikkeld worden, geëxtrapoleerd kunnen worden naar andere humane aandoening met een genetische basis. Tijdens dit project zijn er drie belangrijke doelstellingen. Ten eerste zullen we klassieke koppelingsanalyses combineren met exoom sequencing ten einde nieuwe ziektegenen te identificeren. Ten tweede, zullen we exoom sequencing toepassen om het moleculair screeningsproces in genetisch heterogene aandoeningen te vergemakkelijken. Dit zal de tijd nodig voor een moleculaire bevestiging van een klinische diagnose drastisch verminderen. Ten derde zullen we exoom sequencing gebruiken om het verantwoordelijke genetische defect op te sporen in sporadische patiënten met aandoeningen waarvoor geen genen bekend zijn of waarvoor de gekende causale genen zijn uitgesloten. Dit project zal de basis vormen voor verder functionele onderzoek met het oog op een beter begrip van de ziekteveroorzakende mechanismen. Daarenboven zal het ook een platform opleveren die andere onderzoekers in de mogelijkheid zullen stellen de genetische basis van andere ziekten te bestuderen.

Onderzoeker(s)

Onderzoeksgroep(en)

Studie van de rol van genetische variatie in de fenotypische variabiliteit en respons bij patiënten met het Marfan-syndroom. 01/02/2011 - 31/12/2013

Abstract

Dit project kadert in een onderzoeksopdracht tussen enerzijds UA en anderzijds de NMF. UA levert aan de NMF de onderzoeksresultaten genoemd in de titel van het project onder de voorwaarden zoals vastgelegd in voorliggend contract.

Onderzoeker(s)

Onderzoeksgroep(en)

Studie van de TGFbeta signalisatieweg in erfelijke bindweefselaandoeningen. 01/12/2010 - 30/09/2015

Abstract

Dit project betreft fundamenteel kennisgrensverleggend onderzoek gefinancierd door het Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. Het project werd betoelaagd na selectie door het bevoegde FWO-expertpanel.

Onderzoeker(s)

Onderzoeksgroep(en)

GABAerge therapie voor het fragiele X syndroom 01/07/2010 - 31/12/2014

Abstract

Dit project wil onderzoeken of het GABAerge systeem een geschikt target is voor gerichte behandeling van het fragiele X syndroom. We zullen daarom onderzoeken of door correctie van deficiënte GABAsynthese, de afwijkingen in de fragiele X knockout muizen kunnen hersteld worden. Enerzijds zal een genetische rescue muis gegenereerd en vervolgens geanalyseerd worden. Anderzijds zullen enkele potentiele therapeutica die inwerken op het gaba systeem uitgetest worden op de fragiele X knockout muis.

Onderzoeker(s)

Onderzoeksgroep(en)

Klinisch moleculaire en functionele studies van multipele osteochondromen en verwante aandoeningen. 01/01/2010 - 31/12/2011

Abstract

Dit project kadert in een onderzoeksopdracht tussen enerzijds UA en anderzijds IWT. UA levert aan IWT de onderzoeksresultaten genoemd in de titel van het project onder de voorwaarden zoals vastgelegd in voorliggend contract.

Onderzoeker(s)

Onderzoeksgroep(en)

Opsporing van microdeleties en duplicaties bij epilepsiepatïënten aan de hand van SNP arrays. 01/02/2009 - 30/04/2009

Abstract

Copy number variations in het genoom zijn verantwoordelijk voor 10-20% van alle mentale handicaps. Recent is gepostuleerd dat deze cnv's ook verantwoordelijk kunnen zijn voor epilepsie. Daarom willen wij in een pilootproject 30 patiënten met idiopathische epilepsie en mentale retardatie testen aan de hand van Illumina SNP assays op het voorkomen van microdeleties.

Onderzoeker(s)

Onderzoeksgroep(en)

Subsidie aan de Centra Menselijke Erfelijkheid. 01/01/2008 - 31/12/2011

Abstract

Dit project kadert in een onderzoeksopdracht tussen enerzijds UA en anderzijds de Vlaamse overheid. UA levert aan de Vlaamse overheid de onderzoeksresultaten genoemd in de titel van het project onder de voorwaarden zoals vastgelegd in voorliggend contract.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontwikkeling van een multiplex-PCR detectiemethode voor de identificatie van deleties verantwoordelijk voor Maturity-Onset-Diabetes-of-the Young (MODY). 01/01/2007 - 31/12/2008

Abstract

Maturity-Onset-Diabetes-of-the Young (MODY) is een monogenische, genetisch heterogene vorm van diabetes, gekarakteriseerd door autosomaal dominante overerving en vroege aanvangsleeftijd. Dit project beoogt de ontwikkeling van een snelle detectiemethode voor deleties in de meest frequent gemuteerde MODY genen, het glucokinase gen (MODY2) en het HNF1a gen (MODY3). Dit moet leiden tot een betere, gevoeligere moleculaire diagnostiek voor MODY patiënten.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontwikkeling van een array-gebaseerde MLPA methode voor de opsporing van microdeleties en duplicaties bij mentaal gehandicapten. 01/01/2007 - 31/12/2008

Abstract

Microdeleties en duplicaties zowel ter hoogte van de telomeren als verspreid door het genoom, zijn verantwoordelijk voor een mentale handicap bij meer dan 10% van alle patiënten. Slechts enkele van deze afwijkingen hebben een klinisch herkenbaar beeld. Dit impliceert dat meeste patiënten moeten getest worden voor alle gekende afwijkingen. Daarom willen wij een array-gebaseerde MLPA methode ontwikkelen die het mogelijk maakt simultaan alle loci te testen op een groot aantal patiënten.

Onderzoeker(s)

Onderzoeksgroep(en)

Europees netwerk ter bevordering van onderzoek naar niet veel voorkomende kanker bij volwassenen en kinderen: pathologie, biologie en genetica van bottumoren (EuroBoNet). 01/02/2006 - 31/07/2011

Abstract

Europees netwerk ter promotie van onderzoek naar zeldzame kankers in volwassenen en kinderen: pathologie, biologie en genetica van bottumoren (EuroBoNet) Primaire bottumoren zijn zeldzaam en vertegenwoordigen ongeveer 0,2% van alle kankers waarbij zowel kinderen als jonge adolescenten getroffen worden. Hoewel de kennis de laatste jaren significant is toegenomen is de etiologie vaak niet gekend en is er een hoge mortalliteit binnen dezegroep van kankers. Het EuroBoNet netwerk bestaat uit 4 onderzoekslijnen (RL1: Kraakbeentumoren, RL2: osteogene tumoren en sarcomen, RL3: osteoclastogenese en Giant cell tumoren van bot en RL4: Ewing tumoren. Ondersteund door technology platforms, een virtuele Biobank, SOPs en uitwisseling van onderzoekers en materialen moeten deze onderzoekslijnen resulteren in een grotere kennis inzake bottumoren. Hierdoor moet het mogelijk worden betere therapieën en tumormerkers te ontwikkelen.

Onderzoeker(s)

Onderzoeksgroep(en)

Identification and characterization of genes and molecular mechanisms causing the MHO (MHE) phenotype. 01/01/2006 - 30/06/2006

Abstract

Onderzoeker(s)

Onderzoeksgroep(en)

Identificatie en karakterisatie van susceptibiliteitsgenen voor bipolaire affectieve stoornissen. 01/01/2003 - 31/12/2006

Abstract

Het project is gebaseerd op de resultaten van 4 onafuankelijke genomische zoektochten voor bipolaire stoornis (BP). Deze genomische zoektochten hebben geleid tot de identificatie van verschillende chromosomale gebieden die mogelijk genen bevatten voor BP. De beschikbaarheid van grote patienten populaties en het gebruik van 'high throughput' genotyperingsmethoden laten toe om allelische associatiestudies uit te voeren in deze gebieden, wat uiteindelijk zal leiden tot de identificatie van BP geassocieerde genen.

Onderzoeker(s)

Onderzoeksgroep(en)

Identificatie van een gen voor bipolaire affectieve aandoening in chromosoomregio 8q24. 01/01/2003 - 31/03/2004

Abstract

Onderzoeker(s)

  • Promotor: Nöthen Markus
  • Co-promotor: Cichon Sven

Onderzoeksgroep(en)

Formal and molecular genetic studies of bipolar affective disorder. 01/01/2003 - 31/03/2004

Abstract

Onderzoeker(s)

  • Promotor: Nöthen Markus
  • Co-promotor: Cichon Sven

Onderzoeksgroep(en)

Identificatie en karakterisatie van erfelijke monogene en polygene ziektebeelden. 01/01/2002 - 31/12/2006

Abstract

Dit project groepeert 4 onderzoeksteams van het Centrum Medische Genetica van de Universiteit Antwerpen die onderzoek verrichten betreffende erfelijke botaandoeningen, doofheid, mentale retardatie en psychiatrische ziektebeelden. De algemene doelstellingen van deze onderzoeksprojecten zijn de localisatie en identificatie van ziektegenen, de functionele analyse van nieuw geidentificeerde genen, en het onderzoeken van therapeutische toepassingen in diermodellen op basis van de resultaten van de functionele analyse.

Onderzoeker(s)

Onderzoeksgroep(en)

Moleculair genetische analyse van schizofrenie. 01/01/2002 - 31/03/2004

Abstract

Onderzoeker(s)

  • Promotor: Nöthen Markus

Onderzoeksgroep(en)

Onderzoek naar de identificatie van een gen voor bipolaire affectieve aandoening in chromosoomregio 8q24. 01/01/2002 - 31/12/2003

Abstract

Bipolaire affectieve aandoening (BPAD) wordt gekenmerkt door ernstige, abnormale gemoedsveranderingen met alternerende periodes van manie en depressie. Het heeft een levensprevalentie van ongeveer 1% in alle humane populaties en geeft aanleiding tot aanzienlijke kosten ten gevolge van de hoge morbiditeit en mortaliteit. Behandeling met geneesmiddelen is vaak teleurstellend door hun niet gerichte actie en hun bijkomende neveneffecten en bovendien hebben de episoden de neiging om terug te keren. Hoewel de etiologie en pathofysiologie nog volstrekt onbekend zijn, tonen familie-, tweeling-, en adoptiestudies aan dat erfelijke factoren een belangrijke rol spelen bij het ontstaan van de ziekte. De meerderheid van deze studies duidt op een mogelijke betrokkenheid van meerdere genen met kleine effecten en/of het voorkomen van belangrijke allelische effecten in epistase. Koppelingsanalyse is één van de best beschikbare methoden om de chromosomale loci met genen voor BPAD te identificeren. Hoewel er wereldwijd door verschillende onderzoeksgroepen veelbelovende koppelingsresultaten werden gevonden, is er tot op heden nog geen enkel gen geïdentificeerd. De koppelingsgebieden zijn meestal grote genetische regio's (>10 cM), wat het systematische onderzoek naar kandidaatgenen bemoeilijkt. Genidentificatie is echter reeds mogelijk gebleken bij andere ziekten met een complexe overervingswijze (Diabetes mellitus type 2, Ziekte van Crohn) met behulp van linkage disequilibrium (LD), dat detecteerbaar is over korte genetische afstanden (<1 cM). Tot voor kort werd de zoektocht naar LD in kandidaatgebieden aanzienlijk beperkt door gebrek aan dichtbij elkaar gelegen merkers (single nucleotide polymorphisms (SNPs) en microsatellieten), fysische kaarten, grote groepen van patiënten en snelle, goedkope en nauwkeurige methoden om SNPs te genotyperen. Door de komst van het Humane Genoom Project en de ontwikkeling van de technologie voor genotypering, werden deze problemen aanzienlijk gereduceerd. Dit project is gebaseerd op de koppelingsresultaten van een recent uitgevoerde genoomscan in families met BPAD en zal zich voornamelijk richten op de aanwezigheid van LD in een gebied op chromosoom 8q24, omdat hier het sterkste bewijs voor koppeling werd gevonden, om dan tenslotte het gen dat betrokken is bij de ontwikkeling van BPAD te identificeren. De identificatie van een ziekteveroorzakend gen zal ons in staat stellen de aard van de overeenkomstige genprodukten en hun ziekte veroorzakende afwijkingen te begrijpen. Dit inzicht in de etiologie van BPAD zal perspectieven openen voor nieuwe diagnostische en therapeutische toepassingen.

Onderzoeker(s)

  • Promotor: Nöthen Markus
  • Co-promotor: Cichon Sven
  • Mandaathouder: Van Den Bogaert Ann

Onderzoeksgroep(en)

Clonering en karakterisatie van genen voor hypotrichosis simplex. 01/10/2001 - 31/05/2004

Abstract

Onderzoeker(s)

  • Promotor: Nöthen Markus
  • Mandaathouder: Betz Regina

Onderzoeksgroep(en)