Hybrid monolayer-bilayer graphene quantum dots

Date: 3 November 2016

Venue: UAntwerpen, Campus Groenenborger, Room U. 241 - Groenenborgerlaan 171 - 2020 Antwerpen (route: UAntwerpen, Campus Groenenborger)

Time: 4:00 PM - 5:00 PM

Organization / co-organization: Condensed Matter Theory group

Short description: CMT seminar presented by Mohamad Mirzakhani

Abstract
Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer–bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential. 



Contact email: lucian.covaci@uantwerpen.be

Link: http://cmt.uantwerpen.be