About vortices and vortex structures in ultracold quantum gases

Date: 4 February 2019

Venue: Campus Drie Eiken, Promotiezaal Q0.02 - Universiteitsplein 1 - 2610 Antwerpen-Wilrijk (route: UAntwerpen, Campus Drie Eiken)

Time: 4:00 PM

Organization / co-organization: Department of Physics

PhD candidate: Nick Verhelst

Principal investigator: Jacques Tempere

Short description: PhD defence Nick Verhelst - Faculty of Science, Department of Physics


Trapped clouds of atoms can be cooled down to nanokelvin temperatures and reach the quantum mechanical state known as 'superfluidity'. A superfluid can flow coherently (like a laser), and without friction (like a superconductor). Many flow phenomena that are known for classical fluids, like solitary waves and vortices, have their quantum counterparts in superfluids. The aim of this project is to study vortices and collections of these vortices, in dilute atomic superfluids consisting of fermionic atoms. Fermionic atoms have to pair up in order to become superfluid, so the interplay of the coherence and the interatomic interaction is paramount. This is in contrast to bosonic atoms, which can become superfluid without pairing up. The fermionic system only became experimentally available a few years ago. These experiments also reveal that the properties in dilute fermionic superfluids differ from what is known in superfluid helium and in superconductors. To do investigate these properties, we developed tailored extensions of the techniques used to described superconductors, and combine them with recent theoretical models for fermionic superfluids obtained in the TQC lab where this research will take place. With our approach, we aim to understand and explain how the differences in superflow between bosonic and fermionic superfluids arise.

Link: https://www.uantwerpen.be/science