Static and dynamic self-assembly of nanoparticles and post-assembly modifications of the resulting materials

Date: 28 March 2019

Venue: Campus Groenenborger, Building U, Room 244 - Groenenborgerlaan 171 - 2020 Antwerpen

Time: 11:30 AM - 12:30 PM

Organization / co-organization: EMAT

Short description: EMAT lecture by Prof Rafal Klajn from Department of Organic Chemistry, Weizmann Institute of Science

Self-assembly has emerged as the method of choice for preparing materials made of nanosized particles [1–3]. Over the past several years, our group has been interested in developing new ways to control self-assembly of inorganic nanoparticles into higher-order, static and dynamic structures. I will begin this talk by discussing our most recent studies on electrostatic self-assembly of oppositely charged nanoparticles. We have conceived a novel method to induce co-assembly of positively- and negatively-charged nanoparticles, which, unlike previously reported methods, maintains the high surface charge on these nanoparticles during the self-assembly process, and leads to previously unknown assemblies [4]. Next, I will introduce ways to control self-assembly of nanoparticles using external stimuli, such as light [5, 6], magnetic field [7, 8], and CO2 [9], as well as emerging applications of such nanoparticles [10, 11]. The final part of my talk will focus on post-assembly modifications of nanoparticle aggregates, and will demonstrate that such aggregates can serve as precursors for further transformations. Specifically, I will discuss selective etching of binary nanoparticle superlattices and its use to prepare a novel family of materials, non–close-packed nanoparticle arrays [12].

[1] Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S. & Murray, C. B. Nature 2006, 439, 55.
[2] Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M. & Grzybowski, B. A. Science 2006, 312, 420.
[3] Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C. & Mirkin, C. A. Nature 2008, 451, 553.
[4] Unpublished results.
[5] Manna, D.; Udayabhaskararao, T.; Zhao, H. & Klajn, R. Angew. Chem. Int. Ed. 2015, 54, 12394.
[6] Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D. & Klajn, R. Nat. Chem. 2015, 7, 646.
[7] Singh, G.; Chan, H.; Baskin, A.; Gelman, E.; Repnin, N.; Král, P. & Klajn, R. Science 2014, 345, 1149.
[8] Das, S.; Ranjan, P.; Maiti, P. S.; Singh, G.; Leitus, G. & Klajn, R. Adv. Mater. 2013, 25, 422.
[9] Lee, J.-W. & Klajn, R. Chem. Commun. 2015, 51, 2036.
[10] Chovnik, O.; Balgley, R.; Goldman, J. R. & Klajn, R. J. Am. Chem. Soc. 2012, 134, 19564.
[11] Zhao, H.; Sen, S.; Udayabhaskararao, T.; Sawczyk, M.; Kučanda, K.; Manna, D.; Kundu, P. K. Lee, J.- W.; Král, P. & Klajn, R. Nat. Nanotech. 2016, 11, 82.
[12] Udayabhaskararao, T.; Altantzis, T.; Houben, L.; Coronado-Puchau, M.; Langer, J.; Popovitz-Biro, R.; Liz-Marzán, L. M.; Vuković, L.; Král, P.; Bals, S. & Klajn, R. Science 2017, 358, 514.