Hydrogen induces high-temperature superconductivity in a monolayer material

Date: 19 August 2019

Introduction: UAntwerp researchers from the CMT group, Dr Jonas Bekaert and Prof Milorad Milosevic, in collaboration with Swedish researchers have predicted that an atomically thin layer of hydrogen will boost the critical temperature of a thin superconductor to above a hundred kelvin.

Hydrogen-rich bulk superconducting materials have recently exhibited  record-breaking critical temperatures, approaching room temperature, and  thereby promising a major technological impact on society. However,  these hydrides have the practical disadvantage of requiring extreme  pressures to become superconducting.

As a novel exploration route, a team of scientists from Belgium and  Sweden has envisaged that a layer of hydrogen adatoms can strongly alter  the electronic and vibrational features of an atomically thin material,  thereby enhancing its phonon-mediated superconductivity.

This idea was tested on a monolayer of magnesium diboride, where  hydrogenation was demonstrated to elevate the critical temperature of  the superconducting state to above a hundred kelvin - several times  higher than in the absence of hydrogen!

This new approach to achieve high-temperature superconductivity,  requiring no external pressure, remains to be applied to a number of  ultrathin materials synthesized to date, holding promise for radical  breakthroughs in novel heterostructured functional materials and their  practical applications.


CMT-website

This work was published in Phys. Rev. Lett. 123, 077001 (2019)



Link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.077001