Nobelprijs Fysica 2020

​Three Laureates share this year's Nobel Prize in Physics for their discoveries about one of the most exotic phenomena in the universe, the black hole.

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2020 to Roger Penrose, University of Oxford, UK, Reinhard Genzel, Max Planck Institute for Extraterrestrial Physics, Garching, Germany and University of California, Berkeley, USA, and Andrea Ghez, University of California, Los Angeles, USA.

With one half to Roger Penrose, University of Oxford, UK

“for the discovery that black hole formation is a robust prediction of the general theory of relativity”

and the other half jointly to

Reinhard Genzel, Max Planck Institute for Extraterrestrial Physics, Garching, Germany and University of California, Berkeley, USA, and Andrea Ghez, University of California, Los Angeles, USA

“for the discovery of a supermassive compact object at the centre of our galaxy”

https://www.kva.se/en/pressrum/pressmeddelanden/nobelpriset-i-fysik-2020

Europa buigt zich over Einstein Telescoop

Limburg is in de running als locatie voor prestigieuze wetenschappelijke infrastructuur

Zwaartekrachtsgolven zijn de sleutel tot het ontsluieren van heel wat geheimen over ons heelal. Om die golven in optimale omstandigheden te detecteren, willen wetenschappers uit meerdere landen de Einstein Telescoop bouwen. De Maas-Rijn Euregio is een van de twee potentiële locaties. Europa buigt zich nu over de projectaanvraag.

Honderd jaar geleden lanceerde Einstein zijn theorie over de zwaartekrachtsgolven. Het duurde nog tot 14 september 2015 vooraleer ze voor het eerst werden waargenomen. Natuur- en sterrenkundigen over de hele wereld waren enthousiast. “We kregen een nieuwe manier in handen om het heelal te bestuderen”, vertelt prof. Nick Van Remortel (UAntwerpen). “Observatie van zwaartekrachtsgolven kan leiden tot nieuwe ontdekkingen, bijvoorbeeld over hoe zwarte gaten ontstaan en wat er gebeurde nét na de oerknal. In 2015 ging echt een nieuw tijdperk in de natuur- en sterrenkunde van start.”

Neutronensterren

Zowel Europa als de VS investeerden reeds in detectoren om zwaartekrachtsgolven waar te nemen. De Advanced Virgo (in Europa) en Advanced LIGO (in de VS) lagen reeds aan de basis van adembenemende wetenschappelijke verwezenlijkingen. Zo konden in augustus 2017 de zwaartekrachtsgolven veroorzaakt door het samensmelten van twee neutronensterren geobserveerd worden. Die gebeurtenis werd gelijktijdig door een groot aantal andere instrumenten, zowel op de aarde als in de ruimte, waargenomen en dit over het ganse elektromagnetisch spectrum, gaande van radiogolven tot gammastraling: het begin van het tijdperk van ‘multi-messenger astronomy’ gebruikmakend van zwaartekrachtsgolven. 

“Om het potentieel van deze jonge wetenschapsdiscipline ten volle te benutten is er een nieuwe generatie observatoria nodig”, legt prof. Alexander Sevrin (VUB) uit.  Een consortium van Europese landen en van onderzoeksinstituten uit diverse Europese universiteiten werkten gezamenlijk een project voor de Einstein Telescoop uit. Aan Vlaamse zijde zijn KU Leuven, UAntwerpen, UGent en de VUB betrokken.

Fysica van zwarte gaten

Sevrin: “De Einstein Telescoop zal ons in staat stellen om alle samensmeltingen van stellaire en intermediaire massa zwarte gaten in het ganse oberveerbare universum waar te nemen en zal zo in belangrijke mate bijdragen tot het begrijpen van de evolutie van ons universum. De telescoop zal ook  nieuw licht werpen op het ‘Donker Universum’ en zal de rol van donkere materie en donkere energie in onze kosmos mee ophelderen.”

Ook het in detail bestuderen van de fysica van zwarte gaten wordt mogelijk. “Deze enigmatische objecten zijn ideaal om de algemene relativiteitstheorie in extreme omstandigheden te testen en te exploreren”, blikt prof. Thomas Hertog (KU Leuven) vooruit. “Daarnaast zal de telescoop jaarlijks duizenden samensmeltingen van neutronensterren detecteren en ons zo toelaten om het gedrag van materie bij enorm grote dichtheid en druk, condities die onmogelijk in een laboratorium gerealiseerd kunnen worden, te bestuderen. Daarenboven zal dit fysici ook in staat stellen om de kernfysica die aan de basis ligt van supernovaontploffingen van sterren te begrijpen.”

Regio wordt al voorbereid

De EU financierde reeds het conceptuele ontwerp van het prestigieuze project. Het consortium diende het dossier nu in met het oog op de herziening van de European Strategic Forum for Research Infrastructures (ESFRI) roadmap. EFSRI buigt zich over de toekomstige grootschalige wetenschappelijke infrastructuren in Europa. Met de politieke steun van België, Italië, Nederland, Polen en Spanje brengt het consortium ongeveer 40 onderzoeksinstellingen en universiteiten uit verschillende Europese landen samen. Haar voorlopig hoofdkwartier is het “European Gravitational Observatory” (EGO) in Italië. Er wordt gehoopt op de realisatie van een zusterproject, “Cosmic Explorer” in de VS. 

De Einstein Telescoop zal ondergebracht worden in de diepe ondergrond (zie figuur). Twee locaties komen in aanmerking: het Italiaanse Sardinië en de Maas-Rijn Euroregio (het drielandenpunt België-Duitsland-Nederland). “Beide regio’s worden nu geëvalueerd en binnen de komende vijf jaren zal beslist worden waar de telescoop gebouwd zal worden”, aldus prof. Nick van Remortel (UAntwerpen). “Nu al lopen er in ‘onze’ regio twee voortrajecten met Belgische deelname: ETpathfinder en E-TEST. Die projecten krijgen financiële steun van Europa. Tien Belgische universiteiten en onderzoekscentra, Nederlandse universiteiten en de Nederlandse en Vlaamse overheden werken er samen om de regio optimaal voor te bereiden voor dit baanbrekende wetenschappelijk avontuur.” Artist rendering van de 3x10km lange driehoek layout van het toekomstige ET project, ingebed op 150m diepte in ofwel de Maas-Rijn regio BEL-NL-GER, of Sardinië in Italië. Elk van de drie hoekpunten of “meetstations” zijn ondergebracht in een ondergronds laboratorium, uitgerust met ultramoderne laser optica, opgahangen aan lange pendels van gemiddeld 15 m hoog (courtesy NIKHEF, Amsterdam)

Meer info op:
https://www.einsteintelescope.be
https://www.einsteintelescope.nl/mediakit/
https://www.etpathfinder.eu/
https://ec.europa.eu/info/research-and-innovation/strategy/european-research-infrastructures/

CMS tracker upgrade in times of COVID-19

Successful remote prototyping of CMS modules 

In the last week of May and the first weeks of June, the Belgian CMS tracker upgrade group resumed tracker module prototyping with an exercise of remote assembly of a piece of module mockup. A small team, composed of Ali Khalilzadeh (PhD student, operating in the clean room), Inna Makarenko (postdoctoral researcher, remote advising on jig handling, operating in the clean room on different days), Yannick Allard (remote advising on glue dosing and providing general support) as well as Senne Van Putte (PhD student from Antwerpen, remote operating the gluing robot) and Xavier Janssen (researcher from Antwerpen, remote advising), succeeded in equiping a mockup glass sensor with high-voltage insulator strips, a delicate step among those required in the assembly of a real tracker module.

The picture below shows the assembly control room as a shared screen, displaying the previously-prepared assembly workflow, the gluing robot control interface, front and side views of the robot with Ali handling the gluing jigs, and the view from Ali's cell phone camera.



The success of this delicate exercise shows remarkable coordination among the team members and is something that the CMS tracker phase-2 team is very proud of.

The wire bonding machine making the microbonds between the sensors and the readout electronics has also been recommissoned by Inna. Emil Bols (PhD student coordinating the metrology) started deploying the metrology setup. This setup will help us guarantee that the assembly precision required for the use of the tracker data at the first trigger level is reached in our production center.

The next step is the complete assembly of dummy module 2 (DM#2), our second full-size mockup made of non-functional components. In the current context, this assembly is planned to be stretched over a full month, while in real production, 4 modules should be produced in a single day on average.

At the same time, activities on building an electronic read-out test station to validate the constructed module were resumed in the Antwerp electronic lab of the EDF group ensuring social distancing and/or remote work. This test station will be moved once ready this summer in the clean room in Brussels (Wim Beaumont - electronic engineer, Eric Roosen - electronic engineer, Tomas Kello - PhD student).

The Belgian tracker upgrade module production group is: Yannick Allard, Wim Beaumont, Bugra Bilin, Emil Bols, Gilles De Lentdecker, Davide Di Croce, Jorgen D'Hondt, Laurent Favart, Dmytro Hohov, Xavier Janssen, Tomas Kello, Ali Khalilzadeh, Michael Korntheuer, Steven Lowette, Inna Makarenko, Annemie Morel, Alexander Morton, Erik Roose, Ali Safa, Pascal Vanlaer, Senne Van Putte. It works in close collaboration with the Belgian tracker upgrade dee integration group at UCLouvain.

June, 18 2020

Einstein Telescope

Consortium presents plans for a high-tech observatory for gravity waves

Scientists go underground with Einstein

If it’s up to a consortium of Belgian, German and Dutch universities and research institutions, the coming years will be marked by intensive construction of the Einstein Telescope in Dutch Limburg, 200–300 metres beneath the earth’s crust. With this prestigious international project, scientists hope to monitor gravity waves, which will also be beneficial to the industry.

In the early 20th century, Albert Einstein predicted the existence of gravity waves – fluctuations in the curvature of spacetime – in his theory of relativity. These gravity waves were observed for the first time in 2015. Two years later, this would result in a Nobel Prize in Physics for the three scientists involved. Since that time, gravity waves have been attracting considerable attention. This has even led to a new area of scientific research: gravitational-wave astronomy.

‘We use telescopes to monitor these gravity waves’, notes Nick van Remortel, a physics professor at the University of Antwerp. ‘In order to view stars, these telescopes should ideally be placed in the most remote locations possible. This is not the case for telescopes that are used to study gravity waves. We therefore need specific infrastructure, including high-tech lasers, with underground tunnels, which can be created even in densely populated areas. The underground character is important in order to suppress natural vibrations, as well as those caused by human activity’.

Continue reading this article

More press coverage for The Einstein telescope

Dr. Merijn van de Klundert receives 2019 CMS Achievement Award

On February 3rd, 2020 the CMS Collaboration Board presented the annual CMS Achievement Awards.

The annual CMS Achievement Awards 2019 for CMS researchers (physicists and engineers) are proposed for significant contributions and exceptional performance

Dr. Merijn van de Klundert, who received his Ph.D. at UAntwerpen in 2018 and now works for DESY in Germany, received his award for his several year long critical contributions to the success of the CASTOR experiment, spanning many activities including multiple detector installations, integration in the CMS DAQ/DCS/Trigger systems, commissioning and operation, calibration and performance , as well as leading contributions to data analysis and the overall CASTOR physics program.

The Particle Physics group congratulates Merijn for this recognition of his great dedication to the CMS exepriment. 

Belgian scientists use new technology in search for elementary particles

Belgian scientists, among which our colleagues at the Particle Physics Group, are turning their attention to the next big thing: sterile neutrinos. With the help of French and British colleagues, they are using a revolutionary technology to record evidence that these particles exist.

A European consortium of two French, two British and three Flemish universities and one federal research institute (UAntwerp, UGent, VUB and SCK•CEN in Mol) joined forces in early 2013. Together, they have developed a ‘neutrino experiment’. The project is named SOLID, which stands for Search for Oscillations with a Lithium6 Detector (see pictures).

The scientists want to record sterile neutrinos. “These elementary particles may be linked to the particle for which Belgian François Englert and Briton Peter Higgs were awarded the Nobel Prize for physics in 2013,” says Prof Nick van Remortel (UAntwerp). “If these new elementary particles are actually found, it will immediately answer many fundamental questions about the origin of mass and the stability of the universe.”

Read the full article on the SCK-CEN website

 

Publication in Nature Physics: CERN experiments report new Brout-Englert-Higgs boson measurements

Geneva, 23 June 2014.
In a paper published in the journal Nature Physics today, the CMS experiment at CERN reports new results on an important property of the Brout-Englert-Higgs particle, whose discovery was announced by the ATLAS and CMS experiments on 4 July 2012. The CMS result follows preliminary results from both experiments, which both reported strong evidence for the fermionic decay late in 2013.

Read more:

UAntwerpen press release (Dutch, pdf - 170Kb)

CERN press release (English)

Science Magazine: Breakthrough of the Year, Dec 2012

The new boson discovery has been named the

Breakthrough of the Year

by Science magazine.


The cover, editorial and articles - including the ones about CMS and the one signed by the CMS experiment - are linked below:

Cover:
http://www.sciencemag.org/content/338/6114.cover-expansion
Editorial:
http://www.sciencemag.org/content/338/6114/1511.full.pdf
Introduction and Glossary:
http://www.sciencemag.org/content/338/6114/1558.full.pdf

Journey in the Search for the Higgs Boson: The ATLAS and CMS Experiments at the Large Hadron Collider, M. Della Negra, P. Jenni, and T. S. Virdee
http://www.sciencemag.org/content/338/6114/1560.full.pdf

A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider, The CMS Collaboration
http://www.sciencemag.org/content/338/6114/1569.full.pdf

A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider, The ATLAS Collaboration
http://www.sciencemag.org/content/338/6114/1576.full.pdf

December, 2012

Higgs within reach, July 2012

Our understanding of the universe is about to change…

The ATLAS and CMS experiments at CERN presented their latest results in the search for the long-sought Higgs boson on Wednesday 4th of July. Both experiments see strong indications for the presence of a new particle, which could be the Higgs boson, in the mass region around 126 gigaelectronvolts (GeV).

The experiments found hints of the new particle by analysing trillions of proton-proton collisions from the Large Hadron Collider (LHC) in 2011 and 2012. The Standard Model of particle physics predicts that a Higgs boson would decay into different particles – which the LHC experiments then detect.

Higgs

A proton-proton collision event in the CMS experiment producing two high-energy photons (red towers). This is what we would expect to see from the decay of a Higgs boson but it is also consistent with background Standard Model physics processes. © CERN 2012

Both ATLAS and CMS gave the level of significance of the result as 5 sigma on the scale that particle physicists use to describe the certainty of a discovery. One sigma means the results could be random fluctuations in the data, 3 sigma counts as an observation and a 5-sigma result is a discovery. The results presented today are preliminary, as the data from 2012 is still under analysis. The complete analysis is expected to be published around the end of July.

© Copyright CERN 2012

July 2012