Research team
- Energy and Materials in Infrastructure and Buildings
- Sustainable Pavements and Asphalt Research (SuPAR)
Expertise
Ben Moins’s research expertise focuses on improving the environmental impact and cost-effectiveness of materials and processes, with an emphasis on the construction sector. Key areas include the application of life cycle assessment (LCA) and life cycle cost analysis (LCCA) for comprehensive evaluation of products and technologies, from raw material extraction to the end of their life cycle. These methods are combined with experimental research on material performance, providing in-depth technical, environmental, and economic insights. The research covers innovative building materials, circular applications, and sustainable infrastructure, aiming to support well-founded decisions within design and policy frameworks. A central theme within Ben Moins’s research is the integration of mechanical properties and degradation behavior in sustainability analyses. Contrary to the common practice of assuming fixed, theoretical service lives, sustainability is approached from the perspective of the actual, extendable lifespan of materials and structures. This focus on lifespan extension is crucial, as a longer service life is generally the most effective sustainability strategy. By explicitly linking technical performance to environmental benefits, the research contributes to the transition towards circular and sustainable construction. The research also addresses the use of alternative raw materials, such as secondary, recycled, and bio-based materials, ensuring that these do not compromise technical quality or service life. These materials are assessed not only based on their origin but especially on their performance over the entire life cycle, aiming for realistic and responsible implementation in sustainable construction practices. The methodologies applied and insights gained are broadly applicable beyond the construction sector. Through the use of LCA and LCCA across diverse materials and industries, the research provides valuable contributions to sustainable innovation and decision-making in various domains.
B.Cycle +
Abstract
In an era where sustainability is increasingly crucial, access to appropriate tools at every decision-making level is essential. Micro and macro-economic evaluations are paramount at policy and sector levels, while businesses must monitor the overall impact of their activities, including products and services, necessitating thorough life cycle and cost analyses. The proposed future service platform, B.Cycle+, for sustainability at the business level, from the University of Antwerp, encompasses various invaluable intellectual assets crucial for supporting sustainable decision-making. These assets are designed to equip academic and industrial partners with the necessary tools, information, and resources to make scientifically informed and future-proof decisions regarding sustainability. Furthermore, all companies will have to comply with the sustainability reporting mandated by the European Commission within the framework of the Corporate Sustainability Reporting Directive (CSRD) between now and 2029, an obligation many companies currently struggle to meet. This is where B.Cycle+ will provide support. This is crucial because compliance with these reporting requirements is essential for maintaining competitiveness, meeting regulations, and promoting responsible entrepreneurship. Businesses face the challenge of translating policy into concrete actions while aligning core activities with sustainability objectives. This task may seem complex, making it difficult to maintain an overview. To tackle these challenges, a comprehensive approach is needed. Existing tools already provide support at the product and service levels, which is the focus of the existing B. Cycle service platform. "However, for a complete integration and translation of policy into concrete improvement actions at the business level, the objective measurability and reporting of the results is crucial, a growing need that B.Cycle+ strongly addresses. The proposed future service platform for sustainability at the business level of the University of Antwerp can address these challenges due to its accumulated expertise, comprising an extensive content database of scientific research and best practices, advanced analysis tools and models, comprehensive training, and consultancy services. By combining these assets, the platform aims to enable users to make well-informed decisions that not only meet current sustainability requirements but also address future challenges. The platform facilitates collaboration among various stakeholders and implements monitoring and evaluation mechanisms to continuously improve impact and effectiveness. The expertise and dedication present will undoubtedly make a significant contribution to a more sustainable future for all involved.Researcher(s)
- Promoter: Audenaert Amaryllis
- Co-promoter: Buyle Matthias
- Co-promoter: Meysman Jasmine
- Co-promoter: Moins Ben
Research team(s)
Project type(s)
- Research Project
Sustainability assessment of roads containing reclaimed asphalt pavement - Decision support based on life cycle assessment & life cycle cost analysis during road design.
Abstract
Recycling reclaimed asphalt pavement (RAP) in new roads ensures a circular approach and increases the sustainability. In general, there are three applications for RAP: asphalt mixtures, cement bound base layer mix and unbound material. However, the selection process for any application is currently not optimized. Recent laboratory research also shows that the addition of RAP in new structures does not negatively affect the mechanical properties if the mixture and/or the structural design is optimized. However, it is important to note that these optimizations can have a major impact on the economic and environmental impact of our roads. Therefore, it is important to assess these effects at an early stage so that the most sustainable solution can be chosen. This research will implement life cycle assessment (LCA) and life cycle cost analysis (LCCA) in road design to analyse the environmental and economic impact of the use of RAP in new roads. The first part will focus on the recycling potential of RAP. It will optimize the recycling process and determines the salvage value of RAP as a resource. Next, RAP will be used in a new cycle and the impact on the whole life cycle of roads will be examined. Finally, the LCA and LCCA will be combined and an optimization process will be designed which can be implemented in road design so the most sustainable material flow for RAP can be determined.Researcher(s)
- Promoter: Audenaert Amaryllis
- Co-promoter: Van den bergh Wim
- Fellow: Moins Ben
Research team(s)
Project type(s)
- Research Project