CO2-conversion in a microwave plasma in the presence of H2O: Study of the underlying mechanisms by computational and experimental methods. 01/11/2019 - 31/10/2023

Abstract

Climate change is a pressing issue; therefore, action must be taken now. An important part of the fight against climate change is mitigation and prevention of CO2 from entering the atmosphere. However, this is not enough. By combining the prevention of more CO2 emission with the conversion of the CO2 already present in the atmosphere into value added (industrial) products and fuels, a more sustainable cycle can be created. My project will focus on conversion of CO2 in presence of H2O (a hydrogen source, often found in exhausts and the atmosphere) into value added chemicals by means of microwave (MW) plasma. Indeed, in spite of the abundance of H2O, there exist no models yet for CO2/H2O mixtures in MW plasma. To optimize the conversion, a thorough knowledge of the underlying mechanisms is needed, which I will obtain by combined modelling and experiments. I will develop a 0D chemical kinetics model and a 2D fluid dynamics model. For the experimental part, I will perform two times two research stays: at UMONS and DIFFER. I will evaluate the effect of various plasma and reactor parameters by both modelling and experiments, to obtain a more global understanding for optimized conversion and energy efficiency.

Researcher(s)

Research team(s)

Project website

Project type(s)

  • Research Project