Combined electrostatic precipitation-photocatalysis technology for simultaneous abatement of indoor particulate matter, VOCs and NOx pollution: a study based on experimental analysis and multiphysics modelling. 01/11/2021 - 31/10/2025

Abstract

According to the most recent report of the European Environment Agency on air quality, air pollution represents the most serious environmental risk to human health. To address these problems, the emission of air pollutants must be prevented and avoidance of exposure must be attained in the short term. Since Europeans spend over 90% of their time indoors, indoor air quality management is an efficient strategy. The current proposal focuses on electrostatic precipitation (ESP) and photocatalysis. Despite their extensive use and the growing body of research, both technologies currently have a common constraint: they are only effective against one type of pollutant, i.e. particulate matter or gaseous pollutants. Therefore, this project explores the integration of these technologies by coating the ESP's collector plates with a photocatalyst, to tackle a broad range of pollutants in one operation. There is currently no complete understanding of the mutual effects of ESP and photocatalysis, which hinders the development of a combined technology. In this project several multiphysics submodels are developed to examine the occurring phenomena. In addition, a simplified set-up is investigated experimentally. By combining submodels for all phenomena and correlating them with experiments, all mutual, potentially synergistic, effects of ESP and photocatalysis are studied. Afterwards, the combined technology is optimised and a prototype device is developed and validated.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Combined ESP/photocatalysis for air purification in underground parking garages: a study based on experimental analysis and CFD modelling. 01/11/2020 - 31/10/2021

Abstract

Despite the fact that Europe and Flanders have succeeded in reducing the emission of pollutants into the air, WHO air quality guidelines are not yet within reach. Underground parking garages in particular can promote elevated concentrations of traffic-related pollutants such as PM and NOx, as they accumulate in the building. Especially, ventilated parking garages are hot spots as the pollutants are transferred to the outside environment with a large impact on local ambient air quality. To address this problem, polluted air should be treated before leaving the building. In this project an innovative air purification technology is being considered that combines ESP with photocatalysis to tackle PM and NOx simultaneously. An experimental study will assess the performance of this combined technology under parking garage conditions in terms of PM and NOx removal and degradation. In order to verify the effect of number and location of air purification units on the air quality at the ventilation outlet of parking garages, two existing parking garages are selected as case study. For both, a CFD model for air flow and pollutant dispersion will be developed in which the air purification technology will be virtually implemented. In this way several configurations can be tested. In addition, indoor air quality will be addressed in these models by virtually controlling the available thrust fans in the parking garages.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project