Research team

Expertise

My research is specialized in the application of hyperspectral cameras in the biomedical field, focusing on both microscopic and macroscopic imaging techniques. My work involves the development and enhancement of both the hardware and software required for processing hyperspectral images.

Spectral Pathology: Optimizing Wavelength Selection for Enhanced Hyperspectral Artificial Staining in Pathological Analysis. 01/04/2024 - 31/03/2025

Abstract

The impending 31% surge in cancer incidences by 2030, coupled with a critical shortage of histopathologists, underscores an urgent need for innovations in diagnostic methodologies. A time-intensive aspect of histopathology is the staining of tissue slices, a pivotal step for disease diagnosis and research. Recently, hyperspectral imaging has been proposed to generate virtual stains on unstained tissues, a technique that could revolutionize tissue analysis. This method promises reduced errors, increased efficiency, multi-staining capabilities, and sample conservation. However, the technique is currently limited by small sample sizes, undefined wavelength band efficacy, and restricted data accessibility. This research project, aims to expand the sample size to 100 slices across four cancer types, employing three different hyperspectral cameras. We will create a comprehensive database, initially using the H&E stain as a reference. The project's second objective is to deploy deep learning algorithms to transform hyperspectral data into virtual stains and to ascertain the most effective wavelength bands. Finally, we aim to share our findings and dataset openly to encourage collaborative advancements. At InVilab, our infrastructure features an extensive array of imaging equipment, including a quantum cascade laser, enhancing our research capabilities in hyperspectral imaging. However, we currently face a shortfall in high-magnification lenses essential for detailed mid-to-long-wave infrared microscopy. An integral component for advancing our research. Securing funding of the BOF SRG will enable the acquisition of these critical lenses. This enhancement is imperative for integrating hyperspectral imaging into clinical practice, offering a strategic solution to the histopathologist shortage and advancing patient care outcomes.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project