Abstract
Often a microbiome modification with a "beneficial" microbe does not yield the desired results. This illustrates the need of better tools to study the ecology and evolution of microbiomes, and the effects of artificial modifications to these microbiomes. This project proposes the innovative approach of combining synthetic microbial communities with shallow shotgun metagenomics to gain unprecedented understanding in microbial communities in general. The proposed approach will be developed for a phyllosphere model and used for experimental microbial evolution of whole communities. Successive passaging experiments will be set up where synthetic phyllosphere communities will be moved from one generation of host plant to the next. The results of these experiments will lead to new insights in the ecology and evolution of phyllosphere communities. This project aims at setting up this approach to be more widely useable for testing existing and developing new evolutionary theories. Finally, the impact of the addition of a "beneficial" microbial strain to the phyllosphere model will be studied at the level of the microbiome ecology and evolution, allowing novel insight in long-term effects of artificial modifications of our microbial environment.
Researcher(s)
Research team(s)
Project type(s)