Research team

Determining the role of tryptophan-rich antigens during P. vivax reticulocyte invasion using a functional transgenic P. knowlesi model and P. vivax ex vivo assays. 01/11/2023 - 31/10/2025

Abstract

Plasmodium vivax is the most widespread species causing malaria in humans, but the lack of a long-term culture system has limited knowledge about the biology of this parasite. A key step in the infection of P. vivax is the reticulocyte (young red blood cells) invasion process which involves several host receptor and parasite ligand interactions. Description of P. vivax invasion ligands entails relevant information for the development of vaccines, essential to design targeted control and prevention strategies. In vitro studies and transcriptomic profiles of P. vivax isolates highlighted the potential invasion role of some PvTRAg proteins. In addition, their high immunogenicity and conserved sequence among isolates makes them promising vaccine targets. As the function of the PvTRAgs remains undescribed, this project aims to characterize the involvement of five PvTRAg proteins during the process of erythrocyte invasion. We will carry out in vitro studies using recombinant PVTRAg proteins to evaluate their binding capacity to erythrocytes, and will create transgenic P. knowlesi lines to elucidate the role of the selected PvTRAgs and their P. knowlesi orthologs during invasion. Finally, the PvTRAg proteins that show strong indications of being invasion ligands, will be confirmed in ex vivo invasion assays using P. vivax isolates.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project