Research team

Plasma Lab for Applications in Sustainability and Medicine - Antwerp (PLASMANT)

Expertise

I am an expert in computational fluid dynamics (CFD), plasma physics, and multi-physics modeling. More specifically, I have focused on fluid turbulence, fluid plasma modeling and plasma reactor design. I have experience in designing and constructing various plasma reactors for gas conversion applications. Additionally, I have experience in analog electronics and electromagnetic simulations (for antennas and radio-frequency elements).

Modelling a gliding arc plasma reactor by means of COMSOL Multiphysics 01/10/2017 - 30/09/2019

Abstract

The beginning of the 21st century is marked by the rising awareness of global warming. The greenhouse gases CO2 and CH4 emitted in the atmosphere by industrial processes and the transportation sector are of major concern. Several efforts are being reported for greenhouse gas reduction by means of process optimization and application of new technologies. A new, promising method is the conversion of these greenhouse gases into value-added chemicals by means of atmospheric pressure plasmas, because of their reliability, efficiency, and ease of use. One of the most promising types is the Gliding Arc discharge (GA). GA plasma sources are favored for their high conversion efficiency and simplicity. They are non-thermal plasma sources, able to produce a high plasma density at a relatively low gas temperature (<3000K). Recently, a new type of GA plasma source, based on the innovative reverse-vortex gas flow stabilization, has been developed, allowing for even higher conversion efficiency and lower electrode degradation. However, this type of GA has not yet been studied in detail. The aim of this project is to gain fundamental knowledge on the physical processes inside the reverse-vortex stabilized GA by means of extensive computer modeling based on the COMSOL Multiphysics Software. Initially, 1D and 2D fluid plasma models will be developed, with later extension into a 3D model. The complete 3D model will involve the plasma physics and chemistry, fluid dynamics and heat transfer.

Researcher(s)

Research team(s)

Project website

Modelling a gliding arc plasma reactor by means of COMSOL Multiphysics. 01/10/2015 - 30/09/2017

Abstract

The beginning of the 21st century is marked by the rising awareness of global warming. The greenhouse gases CO2 and CH4 emitted in the atmosphere by industrial processes and the transportation sector are of major concern. Several efforts are being reported for greenhouse gas reduction by means of process optimization and application of new technologies. A new, promising method is the conversion of these greenhouse gases into value-added chemicals by means of atmospheric pressure plasmas, because of their reliability, efficiency, and ease of use. One of the most promising types is the Gliding Arc discharge (GA). GA plasma sources are favored for their high conversion efficiency and simplicity. They are non-thermal plasma sources, able to produce a high plasma density at a relatively low gas temperature (<3000K). Recently, a new type of GA plasma source, based on the innovative reverse-vortex gas flow stabilization, has been developed, allowing for even higher conversion efficiency and lower electrode degradation. However, this type of GA has not yet been studied in detail. The aim of this project is to gain fundamental knowledge on the physical processes inside the reverse-vortex stabilized GA by means of extensive computer modeling based on the COMSOL Multiphysics Software. Initially, 1D and 2D fluid plasma models will be developed, with later extension into a 3D model. The complete 3D model will involve the plasma physics and chemistry, fluid dynamics and heat transfer.

Researcher(s)

Research team(s)

Project website