Research team

Internet Data Lab (IDLab)

Expertise

Johann Marquez-Barja is a Professor at University of Antwerpen, as well as a Professor in IMEC, Belgium. He is leading the Wireless Cluster at IDLab/imec Antwerp. He was and is involved in several European research projects such as CREW, FORGE, WiSHFUL, Fed4FIRE/FAVORITE, Fed4FIRE+, eWINE, CONCORDA, 5G-CARMEN, FLEXNET, FUTEBOL (Technical Coordinator), 5G-Mobix, PROTEGO, G-Blueprint (Technische Coördinator), and InterConnect projects. He is a member of ACM, and a Senior member of the IEEE Communications Society and IEEE Education Society where he participates in the board of the Standards Committee. His main research interests are: 5G advanced architectures including edge computing; flexible and programmable future end-to-end networks; IoT communications and applications. He is also interested in vehicular communications, mobility, and smart cities deployments. Prof. Marquez-Barja is co-leading the Citylab Smart City testbed, part of the City of Things programme, located in Antwerpen, Belgium. Furthermore, he is also interested and active on education development, being actively involved in different research actions to enhance engineering education. Prof. Marquez-Barja has given several keynotes and invited talks in different major events, as well as received 25 awards in his career so far, and co-authored more than 100 articles. He is also serving as Editor and Guest editor for different International Journals, as well as participating in several Technical Programme and Organizing Committees for several worldwide conferences/congresses.

Scalable and Secure Data Sharing (MOZAIK). 01/04/2021 - 31/03/2025

Abstract

Internet connected devices are pervasive in today's world; from smart watches and implants, to thermostats and smart phones, to city-wide deployments of sensors. The wealth of information col-lected by these devices can be used to personalize services and applications, reduce bills and waste in the home, and reduce pollution and traffic congestion. However, there are also great risks. Devices being hacked, network traffic being intercepted, wireless networks tracking devices, breaches of sensitive, and personal, data from corporations and municipal databases, data misuse by contracted third-parties, and fines due to non-compliance are few of the many risks that can form a barrier to system deployment and make it difficult to reap the benefits of the IoT-enabled fu-ture. Moreover, the lack of trusted and secure platforms and privacy-aware analytics methods for secure sharing of personal data and proprietary/commercial/industrial data hampers the creation of a data market and data economy by limiting data sharing. MOZAIK aims to eliminate that barrier by reducing the above-mentioned risks end-to-end, from sensor nodes to the cloud where the data is aggregated, processed and may be stored. To achieve this aim of MOZAIM, we will research on and develop: - a software implementation of a secure and privacy-friendly distributed IoT-data collection and analytics system, considering the whole data cycle, from the generation up to the data sharing, filling important technology gaps through challenge-based and/or user-driven re-search and innovation efforts - an on-demand platform to support businesses and sectors to access expertise, knowledge, algorithms and tools on privacy and security enhancing technologies - a hybrid personal and non-personal data marketplace which ensures respect of prevailing legislation and allows data subjects and data owners to remain in control of their data and its subsequent use.

Researcher(s)

Research team(s)

IMEC-Next generation connectivity for enhanced, safe & efficient transport & logistics (5G-Blueprint). 01/09/2020 - 31/08/2023

Abstract

The overall objective of 5G-Blueprint is to design and validate a technical architecture, business and governance model for uninterrupted cross-border teleoperated transport based on 5G connectivity. 5G-Blueprint will explore and define: - The economics of 5G tools in cross border transport & logistics as well as passenger transport: bringing CAPEX and OPEX into view, both on the supply (Telecom) side and on the demand (Transport & Logistics) side for transformation of current business practices as well as new value propositions - The Governance issues and solutions pertaining to responsibilities and accountability within the value chain dependent on cross border connectivity and seamless services relating to the Dutch & Belgian regulatory framework (telecommunications, traffic and CAM experimentation laws, contracts, value chain management) - Tactical and operational (pre-) conditions that need to be in place to get full value of 5G tooled transport & logistics. This includes implementing use cases that increase cooperative awareness to guarantee safe and responsible tele-operated transport - Preparing and piloting tele-operated and tele-monitored transport on roadways and waterways to alleviate the increasing shortage of manpower and bring transport and logistics on a higher level of efficiency through data sharing in the supply chain and use of AI. - Exploring the possibilities of increasing the volume of freight being transported during the night where excess physical infrastructure capacity is abundant; the lowering of personnel costs would make this feasible on a cost effective basis - Tele-operation will be enabled by the following 5G qualities, such as low latency, reliable connectivity and high bandwidth that current 4G LTE cannot deliver sufficiently. The project's outcome will be the blueprint for subsequent operational pan-European deployment of teleoperated transport solutions in the logistics sector and beyond.

Researcher(s)

Research team(s)

SmartWaterway. 01/12/2019 - 30/11/2021

Abstract

By making waterway transport more cost-efficient, Smart Waterway will enable a modal shift for last mile urban logistics from the road to the small waterways in many European cities, including a city as Ghent. For small barges that could enter these waterways, however, the cost of automating a vessel is high compared to the construction cost. Hence, a cost reduction in automating small vessels will be crucial in this shift. We believe this can only be reached by drastically reducing the equipment cost on the autonomous vessel. This does, however, require significant advances in sensing and localization technology. Although a lower accuracy is sufficient for autonomous waypoint-based navigation, low-cost onboard sensors will not suffice in more complex scenarios (i.e. locks, bottlenecks such as bridges, loading and unloading bays) where accurate localization is needed to safely maneuver the vessel. To overcome this issue, these critical locations will be equipped with additional sensors (e.g., IR, cameras) and a novel ultra-wideband localization system. By combining low-cost onboard sensors with infrastructure near critical locations, Smart Waterway aims to achieve economically viable level 3 autonomy in urban waterways.

Researcher(s)

Research team(s)

IMEC-Interoperable Solutions Connecting Smart Homes, Buildings and Grids (INTERCONNECT). 01/09/2019 - 31/08/2023

Abstract

InterConnect envisages to contribute for the democratization of efficient energy management, through a flexible and interoperable ecosystem where demand side flexibility can be soundly integrated with effective benefits to end-users. In fact, over the last few years several projects and technology providers have come up with solutions that allow every energy user to have awareness and control over his appliances, but there has always been a major issue with interoperability. End-users should be able to choose and change their technology providers, without having to replace their installation, every time they feel this need and still be able to adopt sustainable behaviour and benefit from technological advances. In the energy sector, a steep move towards digital is occurring and becoming tremendously user-centric and market-driven. The system dimension is significant, as the number of energy service providers is increasing thanks to favourable regulatory environment and technology advancements for monitoring and control. This is the reason why this consortium integrates relevant partners from all the representative stakeholders in this new energy paradigm. Specific competences in ICT, IoT, energy, data science, software, were included and the full value chain, from R&D institutions, manufacturers, DSO, retailers, IT providers, and energy users is represented. To guarantee a higher Europe-wide impact, several relevant associations related with ICT and energy are also involved. To achieve a significant dimension, 7 large scale pilots, in different countries and with different end-users, are foreseen to guarantee representativeness and dimension in terms of number of appliances and services. The overarching objective of these pilots is to demonstrate a real digital market environment over electrical systems with significant amounts of DSF, reducing operational and investment costs that will benefit energy end-users and help EU achieve its energy efficiency objectives.

Researcher(s)

Research team(s)

IMEC-HAI-SCS. 01/09/2019 - 31/12/2021

Abstract

The goal of the HAI-SCS (Helicus Aero Initiative – Scheduling Connectivity Security) project is to enable complete, secure and safe automation of mission-critical UAV flights focusing on medical transport. To enable the above described objectives, important new technological innovations are planned within the HAI consortium SCS project: * An automated flight planning and scheduling algorithm able to learn in real time the best flight plan and schedule, given a high dimensional set of input parameters and multi-modal output options (flights, ground transport). Given the high dimensionality of the problem, the aim is to reinforce a learning-based approach, where the total reward of all UAS flights is maximized. A phased approach is being proposed in which a fixed corridor-based airspace design is being assumed in a first phase, allowing an operational handshake-based flight approval process that can be set up with the authorities. The second phase involves the inclusion of a flexible airspace design model in the flight planning and scheduling process. * A dynamic heterogenous quality of service (QoS) management layer able to provide seamless QoS across multiple communication channels (e.g., 5G, 4G, private networks, direct C-band links, etc.). Moreover, guaranteed connectivity, meeting the QoS requirements, need to be constructed and scaled up/down instantly. * A versatile security management system that provides the building blocks to secure the communication and control of the UAS taking into account the specific security and performance requirements of the application (e.g., low latency, high bandwidth) and the resource constraints of the UAS (e.g., battery capacity).

Researcher(s)

Research team(s)

IMEC-Internet of Water. 01/05/2019 - 30/04/2023

Abstract

Across Flanders, 2,500 small, energy-efficient and wireless sensors will continuously monitor the quality and quantity of water in Flanders in real time. The intention is to prevent flooding, scarcity and pollution. Researchers are developing a network of 2,500 sensors throughout Flanders, also known as the Internet of Water. They will monitor the quality and quantity of soil, ground and surface water and purified sewage water. These sensors will transmit the current measurement data permanently and in real time to an intelligent water management system. Sensors pass on real-time data to self-learning software, which in turn can make realistic predictions. That, in turn, enables us to take the correct measures in time. With Internet of Water, we provide our water managers with an innovative instrument that will enable them to better protect Flanders against flooding, scarcity or pollution.

Researcher(s)

Research team(s)

Safeguards of the cultural heritage. Tools and practices for its intergrated management in Santiago de Cuba and the Eastern Region of Cuba. 01/01/2019 - 31/12/2022

Abstract

This project focuses on the development of tools and practices that relate to cultural heritage, ICT and sustainable local development from the logic of public spaces, places and memory, valuing the main results of the first stage in different contexts and institutions, in order to contribute to its integrated management. The development of heritage information systems and methodologies for intervention in heritage buildings are some of the tools that integrate the project within the wider societal context.

Researcher(s)

Research team(s)

IMEC-5G for cooperative & connected automated moBIility on X-border corridors(5G-Mobix). 01/01/2019 - 31/10/2021

Abstract

5G-MOBIX aims at executing CCAM trials along x-border and urban corridors using 5G core technological innovations to qualify the 5G infrastructure and evaluate its benefits in the CCAM context as well as defining deployment scenarios and identifying and responding to standardisation and spectrum gaps. 5G-MOBIX will first define the critical scenarios needing advanced connectivity provided by 5G, and the required features to enable those advanced CCAM use cases. The matching between the advanced CCAM use cases and the expected benefit of 5G will be tested during trials on 5G corridors in different EU countries as well as China and Korea. Those trials will allow running evaluation and impact assessments and defining also business impacts and cost/benefit analysis. As a result of these evaluations and also internation consultations with the public and industry stakeholders, 5G- MOBIX will propose views for new business opportunity for the 5G enabled CCAM and recommendations and options for the deployment. Also the 5G-MOBIX finding in term of technical requirements and operational conditions will allow to actively contribute to the standardisation and spectrum allocation activities. 5G-MOBIX will evaluate several CCAM use cases, advanced thanks to 5G next generation of Mobile Networks. Among the possible scenarios to be evaluated with the 5G technologies, 5G-MOBIX has raised the potential benefit of 5G with low reliable latency communication, enhanced mobile broadband, massive machine type communication and network slicing. Several automated mobility use cases are potential candidates to benefit and even more be enabled by the advanced features and performance of the 5G technologies, as for instance, but limited to: cooperative overtake, highway lane merging, truck platooning, valet parking, urban environment driving, road user detection, vehicle remote control, see through, HD map update, media & entertainment.

Researcher(s)

Research team(s)

IMEC-5GCARMEN. 01/10/2018 - 30/09/2021

Abstract

5G for Connected and Automated Road Mobility in the European UnioN. The project will build a 5G-enabled corridor from Bologna to Munich to conduct cross-border trials of 5G technologies in three major use cases: vehicle manoeuvre negotiation (at various levels of automation), infotainment, and emission control. The 5G New Radio will be used to support latency sensitive and/or bandwidth hungry services and applications. The project will leverage on a distributed mobile edge cloud spanning from the vehicle itself to the centralised cloud. Multi-tenancy and neutral host concepts will be leveraged upon to deliver a final platform capable of enabling new business models. 5G-CARMEN will complement C-V2X with LTE and C-ITS technologies, targeting interoperability and harnessing a hybrid network.

Researcher(s)

Research team(s)

IMEC-A budget 2019 01/01/2019 - 31/12/2019

Abstract

This project is part of the IMEC Frame Agreement and is being given as structural investment for fundamental research based on yearly set KPIs from the group to IMEC. This A-budget is defined within the IMEC Way of Working and part of the frame agreement of the University of Antwerp and IMEC.

Researcher(s)

Research team(s)

IMEC-B-Testbed (Better-than-wired). 01/01/2018 - 31/12/2019

Abstract

The Better Than Wired project aims at providing deterministic access to wireless networking so that the same level of Quality of Service guarantees can be given to wireless networks as wired networks feature, with an additional benefit of an increased flexibility. The project will mainly evaluate an industry 4.0 scenario where a plant wants to optimise their connectivity. By combining existing building blocks on programmable network management (e,.g., ORCHESTRA, real-time SDR),the project will feature a high level of flexibility in managing the wireless network. As such, it is possible to quickly anticipate to changes in performance.

Researcher(s)

Research team(s)

IMEC-A- budget 2018. 01/01/2018 - 31/12/2018

Abstract

This project is part of the IMEC Frame Agreement and is being given as structural investment for fundamental research based on yearly set KPIs from the group to IMEC. This A-budget is defined within the IMEC Way of Working and part of the frame agreement of the University of Antwerp and IMEC.

Researcher(s)

Research team(s)

IMEC-FUTEBOL. 01/10/2017 - 31/12/2019

Abstract

FUTEBOL will create research infrastructure and tools that enable and promote the federation of experimental telecommunication resources irrespective of their location in Brazil and Europe, with a view toward global experimentation across heterogeneous networks, both wired and wireless, and a variety of end-systems. The focus of FUTEBOL is on building upon current tools and platforms in support of end-to-end experimentation, creating a pool of, and giving open access to, shared network experimental resources that complement those available in each continent. Industrial and academic researchers in telecommunications have recognized the need for flexibility, intelligence, and the efficient use of resources. These requirements are exemplified by the broad range of technologies being proposed for inclusion into the fifth generation of cellular networks (5G). Furthermore, existing overarching strategies stress the intelligent combination of techniques to flexibly use available resources, both wireless and wired, in the most efficient way. In this sense, FUTEBOL is an experimentation platform that will support the joint optimization of optical network scheduling and radio resource management. Such a platform is required for experimentation-based exploration and validation of several 5G technologies (e.g. cloud radio access networks, cell densification, etc.) and the efficient use of the optical backhaul. The development of a coherent toolset to support joint control of wireless and optical networks in an experimentation context is among the objectives of FUTEBOL, including: (1) to create a toolset to enable experimentation at the wireless/optical network boundary; (2) to provide these tools to an array of experimental facilities that support experiments in both wireless and optical networks in an open manner; and (3) to contribute to open research questions in optical/wireless using the tools developed in the project. The basic experimentation toolset created in FUTEBOL will consist of a defined environment that allows users to focus directly on their problems of interest with minimal overhead. As such, a common experimentation architecture, relevant to issues that cross the wireless/optical network boundary, is the core of this toolset. The architecture will enable the coordination between wireless and optical networks, defining interfaces to provide a standard method of communicating control and management data between each type of network. The toolset based on these elements will support experimentation by providing both a realistic model of real deployments of wireless/optical integration points as well as additional experiment monitoring capabilities that may not be available in real deployments. Furthermore, the toolset must be portable across testbeds to provide a consistent framework independent of the particulars of a given facility. FUTEBOL will also provide open access to the developed tools, through methods such as those defined by the Fed4FIRE project.

Researcher(s)

Research team(s)