Wireless self-sufficient implantable sensor system design and characterisation. 01/10/2021 - 30/09/2025


This BOF Docpro project aims to design and characterise a wireless self-sufficient implantable sensor system. This system can be used both for continuous health monitoring as for the specific detection of biomarkers. More specifically, this research project will focus on lactate detection since it is a well-known biomarker for cancer, fatigue, infections and during anaesthesia. In order for the proposed system to thrive, three main aspects should be taken into consideration: in-body energy harvesting, communication, and biosensing. Each of these aspects has its own challenges. Communication needs to be ultra-low power and wireless and able to transmit the sensor data from within the body to a data sink outside the body. Self-sufficiency is also a very important aspect to keep the in-body devices up and running for an extensive amount of time without the need for an external battery source. Using in-body energy harvesting life-long monitoring becomes feasible. The energy harvesting and communication should also match with the biosensors that need to be designed specifically for the biomarker that needs to be monitored. This challenge is accompanied by the fact that the sensors need to be particularly small and low-power and match the energy capabilities of the self-sufficient system. Finally, the complete system should be designed in such a way that the human body does not reject its presence. The combination of these three main aspects introduces countless possibilities in many medical branches where current detection techniques are too shallow and often associated with excessive radiation exposure. Moreover, abnormalities can be detected at an early stage which implies a higher possibility of effective treatment. In the state of the art some individual aspects are already investigated and show great potential. The main challenge and innovation of this DOCPRO proposal is the system design integrating both the in-body energy harvesting (using a hybrid triboelectric nanogenerator and biofuel cell), the in-body communication (ideally using Bluetooth low energy) and the integration of the biosensor (lactate will be used for this investigation). The prototype needs to be characterised, so we have a clear view of the potential for further research. The proposed project will form the initial foundation for a new research-track within IDLab. It will be the first step in a trajectory of interdisciplinary research concerning IDLab (Internet Data Lab) and AXES (Antwerp X-ray analysis, Electrochemistry and Speciation).


Research team(s)

Project type(s)

  • Research Project