Research team

Identification of novel anti-leukemic T cellreceptors for development of cell therapies using patient blood samples and cutting-edge computational modeling. 07/09/2022 - 31/10/2023

Abstract

The aim of this project is to develop a robust workflow and to identify promising T-cell receptors (TCRs) for the development of T cell-based immunotherapies, focusing on the leukemia-associated antigen Wilms' tumor-1 (WT1). For this, a unique collection of blood samples is available from acute myeloid leukemia (AML) patients in the context of our academic clinical trials investigating WT1-loaded dendritic cell (DC) vaccination, a cellular immunotherapy designed to activate WT1-specific T cells. By combining specialized cell sorting techniques with in-house developed bioinformatic tools, single-cell TCR and RNA sequencing will be integrated with cutting-edge computational models to link the specificity and transcriptomic profile of these T cells with patients' clinical responses.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Unlocking the TCR repertoire for personalized cancer immunotherapies. 01/01/2019 - 07/10/2023

Abstract

Cancer is one of the leading causes of death worldwide. Over the past decades, new therapies have been developed that target the patients' immune system to mount an antitumor response. The efficacy of these immunotherapies has already been demonstrated in various clinical trials. Nevertheless, these therapies show a large variation in their individual responses as some patients respond well to the therapy, while others do not. In this project, we will investigate the differences between the T cell receptor (TCR) repertoires of responders and non-responders as a possible marker for immunotherapy responsiveness. We will apply state-of-the-art data mining methods and newly developed immunoinformatics tools to uncover those features that make a patient a clinical responder or non-responder. This will reveal the underlying mechanism of DC-based vaccine responsiveness. This can potentially accelerate general health care in terms of personalized medicine and will save costs.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project