Research team
Expertise
I am an environmental scientist with background in biology and environmental toxicology. My research interests focus on biomonitoring of perfluoroalkyl acids (PFAS) in terrestrial and aquatic ecosystems and the environmental and human health risks they pose. Currently, I am investigating the distribution of PFAS in both terrestrial and aquatic environments, and the potential ecological and human health risks related to PFAS pollution. In the terrestrial environment, my main focus is on biomonitoring of PFAS in the terrestrial food chain (soil, invertebrates, plants and songbirds). I am studying factors that affect bioavailability from soil to biota and the potential toxicity related to PFAS accumulation in these organisms. Furthermore, I am developing or optimizing analytical methods to analyze PFAS in different environmental matrices. In the aquatic environment, the main focus of my research is also on biomonitoring PFAS in the food chain, the toxicity of PFAS to aquatic organisms and on factors that might affect PFAS bioavailability. In addition, I am examining different monitoring techniques (i.e. active and passive biomonitoring) in order to investigate their potential for usage in future PFAS research. In my previous research, I developed an analytical method for the analysis of PFAS from multiple abiotic and biotic samples, examined the distribution of PFAS in great tits and invertebrates along a distance gradient from a fluorochemical hotspot, and studied the potential effects of very high PFAS concentrations on reproduction and oxidative status of great tits. My previous studies on the aquatic environment were primarily investigating the PFAS concentrations in aquatic ecosystems in Africa.
Partnership for the Assessment of Risks from Chemicals (PARC).
Abstract
Chemicals risk assessors and managers are faced with data and knowledge gaps and lack of tools and methods, to speed up and prioritise risk assessments and capture risks from existing and emerging substances across regulatory domains. The lack of available or accessible information increases the risk of 'regrettable' substitutions and slows down the design of safer chemicals. A diverse landscape of regulatory frameworks and actors carrying out risk assessment of chemicals for their specific purpose has resulted in a fragmented approach. Risks to human and environmental health are still in certain cases considered separately, while in most cases they are inherently interrelated. To enable risk assessors and risk managers to respond to current and future challenges, the Partnership should stimulate research and innovation in chemicals risk assessment by developing a collaborative network with public research entities. A common research and innovation programme should be established by national and EU risk assessors and risk managers in consultation with relevant stakeholders (academia, industry, associations and others). Activities of the Partnership should be complementary and subsidiary to obligations under existing regulatory frameworks, and should coordinate with these as relevant. The Partnership should become a reference centre for research questions related to chemicals risk assessment, including those emerging from other Horizon Europe partnerships or missions. The Partnership is expected to establish relevant collaborations with other Horizon Europe partnerships and missions as set out in the working document on 'Coherence and Synergies of candidate European partnerships under Horizon Europe' as well as to explore collaborations with other relevant activities at EU and international level. The Partnership should align with EU-wide initiatives on open access and FAIR data.Researcher(s)
- Promoter: Knapen Dries
- Co-promoter: Bervoets Lieven
- Co-promoter: Blust Ronny
- Co-promoter: Covaci Adrian
- Co-promoter: Groffen Thimo
- Co-promoter: Poma Giulia
- Co-promoter: Vergauwen Lucia
- Co-promoter: van Nuijs Alexander
Research team(s)
Project type(s)
- Research Project
Influence of soil properties on the sorption of per- and polyfluoroalkylated substances to soil and the bioavailability and bioaccumulation to terrestrial biota.
Abstract
Per- and polyfluoralkylated substances or PFAS, which have been used in large quantities since the 1940s because of their applications such as food packaging, are receiving increasing attention since the early 2000s. The production and use of PFAS have led to the global detection in the environment. Despite regulatory measures for perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), the most frequently detected PFAS, there are concerns on many other PFAS that are similar in structure and properties and that are not regulated. Soils form the basis of the terrestrial food chain and PFAS uptake from contaminated soils is known to cause human exposure to PFAS. However, there are many uncertainties on the behaviour of PFAS in soils and the following bioavailability to and bioaccumulation in biota. The general objective of my project is to investigate the role of soil properties and temperature on the uptake and distribution of PFAS in the terrestrial food chain. Descriptive studies, close to a fluorochemical plant, will provide us with an overview of the concentrations of legacy, novel and unknown PFAS in the terrestrial food chain and how these concentrations are influenced by soil properties. In addition, experimental studies will be performed to disentangle causal links from confounding effects, but also to study the uptake and effects in terrestrial invertebrates and plants. This study will help policy makers to set new, or alter existing, PFAS criteria for soil.Researcher(s)
- Promoter: Bervoets Lieven
- Co-promoter: Eens Marcel
- Co-promoter: Prinsen Els
- Fellow: Groffen Thimo
Research team(s)
Project type(s)
- Research Project
Setting safe limits for two short-chained perfluoroalkyl substances for experimentally exposed soil organisms: perfluorobutane sulfonate (PFBS) and its by-product perfluorobutane sulfonamide (FBSA).
Abstract
The scientific and public attention to the group of per- and polyfluoroalkyl substances (PFAS) has risen exponentially since the beginning of the 2000s. These chemicals have been produced since the 1940 in large quantities for numerous applications such as firefighting foams and fast-food packaging. Due to their production and use in several consumer products, PFAS have been distributed globally in the environment, in which they accumulate in organisms. Regulatory measures for legacy long-chained PFAS, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have led to a restriction in their production and use, with some exemptions. Nonetheless, these long-chained PFAS have often been replaced by short-chained homologues, such as perfluorobutane sulfonate (PFBS). This is also the case for 3M Zwijndrecht, Belgium, a known PFAS hotspot. As a byproduct in the production of PFBS, perfluorobutane sulfonamide (FBSA) is produced. Both chemicals are not regulated, due to the lack of data on their toxicity. As a consequence, both chemicals can be produced and used unrestrictedly, and both of them are discharged in the environment. Based on their persistency (they do not or merely break down in the environment), because they first adsorb to solid matrices after being discharged, and because it is assumed that they are equally toxic as their long-chained homologues, it is necessary to investigate the toxicity of these chemicals to soil organisms. This allows us to set safe limits to protect soil ecosystems. The objective of this study is to set such safe limits for soil ecosystems based on species sensitivity distributions.Researcher(s)
- Promoter: Groffen Thimo
Research team(s)
Project type(s)
- Research Project