AGS-MBR, the continuous-flow, aerobic granular sludge membrane bioreactor for industrial wastewater treatment. 01/11/2022 - 08/02/2025

Abstract

More efficient, compact, and less energy consuming technologies for wastewater treatment are urgently needed to meet the ever stricter discharge norms and to overcome the overall shortage of water, which necessitates water reuse. By combining both membrane bioreactor (MBR) and aerobic granular sludge (AGS) technologies, the main disadvantages of the current conventional activated sludge system (CAS) (e.g. being energy and space intensive and less prone for a compact C/N/P removal or recovery) can be overcome. While the granules can potentially alleviate membrane fouling, the feast-famine conditions and/or other alledged granulation parameters are not straightforwardly transferred to a continuous system with complete sludge retention such as in an MBR. This research aims to achieve and maintain stable granulation of aerobic granular sludge and integrate it with membrane bioreactors in continuous-flow reactors (CFRs). Our central research hypothesis is that the main granulation mechanism, i.e. microbial selection, can be applied to continuous-flow systems. A stepwise approach from sequencing batch to continuous and from continuous to MBR operation, with simple and complex substrates will lead to a final validation with real industrial wastewater. Thorough microbial analysis will gain the required insights to boost the AGS-MBR process to be widely applied in full scale wastewater treatment plants.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project