Research team

Expertise

My general research interests lie at the intersection of AI, computer vision and control sciences. Currently I am focussed on the problem of data scarcity for AI systems, my interests lie in the fusion of multi-modal data across multiple tasks, in addition, I am also interested in augmenting and generating valuable training data via generative learning.

Safer model-based reinforcement learning for motion planning in autonomous inland shipping. 01/11/2023 - 31/10/2025

Abstract

Currently, there is much research in the field of autonomous navigation. More recently, reinforcement learning (RL) is showing promising results in that field. A type of RL that shows great potential, called model-based RL has some considerable advantages over its model-free counterpart. Notably, it shows potential for safety improvement. Safety is one of the most important challenges that RL in autonomous navigation currently faces.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Goal-Oriented Process Control using Constraint-Guided Model-Based Reinforcement Learning. 01/11/2023 - 31/10/2025

Abstract

Due to its strong economic impact, the field of process control has received much research interest over the years. Whilst traditional control methods have been used in the industry for decades, the application of Machine Learning (ML) has not been properly assessed. An interesting novel field withing ML is Reinforcement Learning (RL), which has repeatedly improved the state-of-the-art (SOTA) in the control of complex systems. Consequently, applying this technique to industrial process control has the potential of strongly improving process efficiency. On the one hand, this leads to reduced cost, resource usage and energy requirements for some of the biggest industries worldwide. On the other hand, this opens a new avenue for collaboration between academics and industry. This project aims to research techniques that are centered around applying RL to industrial process control by developing goal-oriented agents that effectively capture the expectations of the user. (1) An agent with an accurate latent world model will be developed with SOTA performance and strong reasoning capabilities. (2) This agent is extended with a reverse imagination model to reconstruct physical states from latent states. State constraints are applied to these physical states based on expert knowledge to create an intuitive framework for guiding the agent. (3) The agent is then transferred from simulation to reality using offline data to align the internal world model with the real-world environment

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Strengthening the capacity for excellence of Slovenian and Croatian innovation ecosystems to support the digital and green transitions of maritime regions (INNO2MARE). 01/01/2023 - 31/12/2026

Abstract

The main goal of INNO2MARE is to strengthen the capacity for excellence of Western Slovenian and Adriatic Croatian innovation ecosystems through a set of jointly designed and implemented actions that will support the digital and green transitions of the maritime and connected industries. Based on an in-depth mapping of the ecosystems and needs & gaps analysis, the consortium will formulate a long-term R&I strategy aligned with regional, national and EU strategies, as a visionary framework, and a joint action & investment plan, with concrete steps for building coordinated, resilient, attractive and sustainable maritime innovation ecosystems. To support the joint strategy and provide a model for the future collaborative R&I of the ecosystems' actors, the project will implement three R&I pilot projects that address some of the key challenges related to maritime education and training, security & safety in marine traffic as well as energy conversion and managementsystems' efficiency. These pilots will be the basisfor further development,scale-up and translation of the generated research results into innovative business opportunities through the coordinated mobilisation of public and private funding. The consortium will also implement innovative programmes that will support the engagement of citizens in the innovation processes, knowledge transfer for mutual learning, entrepreneurship & smart skills training and attraction of best talents, involving more than 1.000 participants across the Quadruple Helix. In all the project activities, the two ecosystems will strongly benefit from the sharing of best practices of the Flemish ecosystem, one of the most developed maritime innovation ecosystems globally. The project will contribute to reducing the innovation divide in Europe by systematically connecting the innovation actors within and between the ecosystems and creating synergies in R&I investments' planning and execution, thus developing a true innovation culture

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Accident-prone Vision-based Simulation for Autonomous Safety-critical Systems 01/11/2022 - 31/10/2024

Abstract

Autonomous navigation has been gaining much traction recently. As a result, we see autonomy developing in vehicles and finding its way in many transportation sectors (including smart shipping). Nevertheless, the current state-of-the-art (SOTA) technology is not mature enough to have a widespread application at a higher autonomy level (e.g. level 4 and above). The main reason is that these systems are trained on a lot of real-world data, which often lacks accident-prone scenarios. In order to solve this problem, I propose a solution based on data-driven neural simulations that provide realistic data based on real-world samples and generate unsafe scenarios (collisions, accidents, etc.). Moreover, my system also provides safety checks to validate unsafe scenarios and provide safe boundaries for the current autonomous systems.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project

Distributed multi-modal data fusion using graph-based deep learning for situational awareness in intelligent transport systems. 01/11/2021 - 31/10/2025

Abstract

Reliability and accuracy are the two fundamental requirements for intelligent transport systems (ITS). The reliability of active perception for situational awareness algorithms has significantly improved in the past few years due to AI developments. Situational awareness can be improved through exchange of information between multiple agents. Making it complex to accomplish high accuracy at low computational cost cooperatively is critical to ensuring safe and reliable transport systems. This research will tackle the main challenges for shared situational awareness that requires perception from multiple sensor streams and multiple agents. This research will tackle the local sensor fusion problem with graph-based deep learning. Local sensor fusion is the fusion at the agent level where multiple mounted sensors will be used to solve a defined task. By exploiting the structural information in multiple modalities, the proposed solution will construct graph-based deep learning. Then distributed fusion will be accomplished by fusing predictions from multiple agents. As a result, the predictions can be fused across multiple agents to produce a richer situational awareness. The advantage of doing distributed fusion is evident in situations where a single agent's perception is not enough. This will be achieved by modeling spatio-temporal graph networks and studying dynamic updates in the graphs. The results will be validated using real-life benchmark datasets and simulation engine.

Researcher(s)

Research team(s)

Project type(s)

  • Research Project