Plasma is very interesting for sustainable chemistry, i.e., the electrification of various chemical reactions, and we are exploring various applications, including CO2 splitting into CO and O2, CH4 conversion into olefins, H2 and valuable carbon (like C-black or C-nanotubes), the combined CO2 and CH4 conversion (dry reforming of methane, DRM) for syngas production, CO2 hydrogenation, partial oxidation of CH4, N2 fixation into NH3 or NOx for green fertilizer synthesis, NH3 cracking into H2, and (plastic and other) waste gasification.  We develop plasma fluid dynamics and chemical kinetics models and perform experiments in various types of plasma reactors, often built in our lab based on our model predictions, for better insight and improving the performance.

Key publications

Plasma technology for the electrification of chemical reactions.
A. Bogaerts
Nature Chem. Eng., 2, 336-340 (2025) and supplementary information

Plasma catalysis: What is needed to create synergy?
J. Van Turnhout, K. Rouwenhorst, L. Lefferts and A. Bogaerts
EES Catalysis, 3, 669-693 (2025)

Post-plasma carbon bed design for CO2 conversion: Does size and insulation matter?
C. O’Modhrain, Y. Gorbanev and A. Bogaerts
J. Energy Chem., 104, 312-323 (2025) and supporting information

Coupling a CO2 plasma with a carbon bed: the closer the better.
O. Biondo, K. Wang, H. Zhang and A. Bogaerts
Chem. Eng. J., 507, 160190 (2025)

Plasma-assisted NH3 cracking in warm plasma reactors for green H2 production.
I. Fedirchyk, I. Tsonev, R. Quiroz Marnef and A. Bogaerts
Chem. Eng. J., 499, 155946 (2024) and supplementary material

Can post-plasma CH4 injection improve plasma-based dry reforming of methane?  A modeling study.
M. Albrechts, I. Tsonev and A. Bogaerts
Green Chem., 26, 9712-9728 (2024) (2024 Green Chemistry Hot Article)​​​

CO2 conversion to CO via plasma and electrolysis: A techno-economic and energy cost analysis.
J. Osorio-Tejada, M. Escriba-Gelonch, R. Vertongen, A. Bogaerts and V. Hessel
Energy Environ. Sci., 17, 5883 (2024)

Upscaling plasma-based CO2 conversion: Case study of a multi-reactor gliding arc plasmatron.
C. O’Modhrain, G. Trenchev, Y. Gorbanev and A. Bogaerts
J. Amer Chem Soc. Au, 4, 333-344 (2024) and supporting information

Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2.
S. Maerivoet, I. Tsonev, J. Slaets, F. Reniers and A. Bogaerts
Chem. Eng. J., 492, 152006 (2024)

Plasma catalysis in ammonia production and decomposition: Use it, or lose it?
Y. Gorbanev, I. Fedirchyk and A. Bogaerts
Curr. Opinion Green Sustainable Chem., 47, 100916 (2024)

Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis.
R. De Meyer, Y. Gorbanev, R.-G. Ciocarlan, P. Cool, S. Bals and A. Bogaerts
Chem. Eng. J., 488, 150838 (2024) and supporting information​​​

Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion.
J. Slaets, B. Loenders and A. Bogaerts
Fuel, 360, 130650 (2024) and supporting information

Correction: From the Birkeland–Eyde process towards energy-efficient plasma-based NOx synthesis: A techno-economic analysis.
K.H.R. Rouwenhorst, F. Jardali, A. Bogaerts and L. Lefferts
Energy Environ. Sci., 16, 6170 (2023)​

Avoiding solid carbon deposition in plasma-based dry reforming of methane.
O. Biodo, C.F.A.M. van Deursen, A. Hughes, A. van de Steeg, W. Bongers, M.C.M. van de Sanden, G. van Rooij and A. Bogaerts
Green Chemistry, 25, 10485 (2023)​

Plasma-based CO2 conversion: How to correctly analyze the performance?
B. Wanten, R. Vertongen, R. De Meyer and A. Bogaerts
J. Energy Chem., 86, 180-196 (2023) and supplementary information I and supplementary information II​

Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions.
B. Loenders, R. Michiels and A. Bogaerts
J. Energy Chem., 85, 501-533 (2023) and supplementary information

Methane coupling in nanosecond pulsed plasmas: Correlation between temperature and pressure and effects on product selectivity.
E. Morais, E. Delikonstantis, M. Scapinello, G. Smith, G.D. Stefanidis and A. Bogaerts
Chem. Eng. J., 462, 142227 (2023) and supporting information​​​

Nitrogen fixation by an arc plasma at elevated pressure to increase the energy efficiency and production rate of NOx.
I. Tsonev, C. O’Modhrain, A. Bogaerts and Y. Gorbanev
ACS Sustainable Chem. Eng., 11, 1888−1897 (2023) and supporting information​

The 2022 Plasma Roadmap: Low temperature plasma science and technology.
I. Adamovich, S. Agarwal, E. Ahedo, L.L. Alves, S. Baalrud, N. Babaeva, A. Bogaerts, A. Bourdon, P.J. Bruggeman, C. Canal, E.H. Choi, S. Coulombe, Z. Donkó, D.B. Graves, S. Hamaguchi, D. Hegemann, M. Hori, H.-H. Kim, G.M.W. Kroesen, M.J. Kushner, A. Laricchiuta, X. Li, T.E. Magin, S. Mededovic Thagard, V. Miller, A.B. Murphy, G.S. Oehrlein, N. Puac, R.M. Sankaran, S. Samukawa, M. Shiratani, M. Šimek, N. Tarasenko, K. Terashima, E. Thomas Jr., J. Trieschmann, S. Tsikata, M.M. Turner, I.J. van der Walt, M.C.M. van de Sanden and T. von Woedtke
J. Phys. D: Appl. Phys.55, 373001 (2022)

Foundations of plasma catalysis for environmental applications.
A. Bogaerts, E.C. Neyts, O. Guaitella and A.B. Murphy
Plasma Sources Sci. Technol.31, 053002 (2022)

Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor.
S. Van Alphen, H. Ahmadi Eshtehardi, C. O’Modhrain, J. Bogaerts, H. Van Poyer, J. Creel, M.-P. Delplancke, R. Snyders and A. Bogaerts​
Chem. Eng. J.443, 136529 (2022) and its supporting information

Energy-efficient small-scale ammonia synthesis process with plasma-enabled nitrogen oxidation and catalytic reduction of adsorbed NOx.
L. Hollevoet, E. Vervloessem, Y. Gorbanev, A. Nikiforov, N. De Geyter, A. Bogaerts and J.A. Martens
ChemSusChem, 2022, e202102526 (2022) and its supporting information

Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream.
F. Girard-Sahun, O. Biondo, G. Trenchev, G. van Rooij and A. Bogaerts
Chem. Eng. Jour., 442, 136268 (2022) and its supporting information

Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance.
B. Wanten, S. Maerivoet, C. Vantomme, J. Slaets, G. Trenchev and A. Bogaerts
J. CO2 Util.,56, 101869 (2022) and its supporting information.

Oxygenate production from plasma-activated reaction of CO2 and ethane.
A.N. Biswas, L R. Winter, B. Loenders, Z. Xie, A. Bogaerts and J.G. Chen
ACS Energy Lett.7, 236-241 (2022) and its supporting information.

Nitrogen fixation in an electrode-free microwave plasma.
S. Kelly and A. Bogaerts
Joule5, 3006-3030 (2021) and its supporting information.

Plasma catalysis for ammonia synthesis: A microkinetic modeling study on the contributions of Eley−Rideal reactions.
Y. Engelmann, K. van ’t Veer, Y. Gorbanev, E.C. Neyts, W. F. Schneider and A. Bogaerts
ACS Sust. Chem. Eng.9, 13151−13163 (2021) and its supporting information.

Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling.
Y. Yi, S. Li, Z. Cui, Y. Hao, Y. Zhang, L. Wang, P. Liu, X. Tu, X. Xu, H. Guo and A. Bogaerts
Appl. Cat. B: Env.296, 120384 (2021)

From the Birkeland–Eyde process towards energy-efficient plasma-based NOX synthesis: a techno-economic analysis.
K.H.R. Rouwenhorst, F. Jardali, A. Bogaerts and L. Lefferts
Energy Environ. Sci.14, 2520 (2021)  Correction published in 2023: Energy Environ. Sci., 16, 6170 (2023)

Sustainable gas conversion by gliding arc plasmas: A new modelling approach for reactor design improvement.
S. Van Alphen, F. Jardali, J. Creel, G. Trenchev, R. Snyders and A. Bogaerts
Sust. Energy Fuels5, 1786 (2021)

NOx production in a rotating gliding arc plasma: Potential avenue for sustainable nitrogen fixation.
F. Jardali, S. Van Alphen, J. Creel, H.A. Eshtehardi, M. Axelsson, R. Ingels, R. Snyders and A. Bogaerts
Green Chem.23,1748 (2021) and its supporting information

Spatially and temporally non-uniform plasmas: Microdischarges from the perspective of molecules in a packed bed plasma reactor.
K. van ‘t Veer, S. van Alphen, A. Remy, Y. Gorbanev, N. De Geyter, R. Snyders, F. Reniers and A Bogaerts
J. Phys. D: Appl. Phys.54, 174002 (2021)

On the kinetics and equilibria of plasma-based dry reforming of methane.
Y. Uytdenhouwen, K.M. Bal, E.C. Neyts, V. Meynen, P. Cool and A. Bogaerts
Chem. Eng. J., 405 126630 (2021)

How gas flow design can influence the performance of a DBD plasma reactor for dry reforming of methane.
Y. Uytdenhouwen, J. Hereijgers, T. Breugelmans, P. Cool and A. Bogaerts
Chem. Eng. J., 405, 126618 (2021)

Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction.
L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts and J.A. Martens
Angew. Chem. Int. Ed.
, 59, 23825-23829 (2020)
(Hot paper, with publicity in ChemistryViews)

Plasma-driven catalysis: green ammonia synthesis with intermittent electricity.
K.H.R. Rouwenhorst, Y. Engelmann, K. van ‘t Veer, R.S. Postma, A. Bogaerts and L. Lefferts
Green Chem., 22, 6258 (2020)

Plasma-based CO2 conversion: To quench or not to quench?
V. Vermeiren and A. Bogaerts
J. Phys. Chem. C, 124, 18401-18415 (2020)

The 2020 plasma catalysis roadmap.
A. Bogaerts, X. Tu, J.C. Whitehead, G. Centi, L. Lefferts, O. Guaitella, F. Azzolina-Jury, H. Kim, A.B. Murphy, W.F. Schneider, T. Nozaki, J.C. Hicks, A. Rousseau, F. Thevenet, A. Khacef and M. Carreon
J. Phys. D: Appl. Phys., 53, 443001 (2020)

Plasma-based N2 fixation into NOx: Insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron.
E. Vervloessem, M. Aghaei, F. Jardali, N. Hafezkhiabani and A. Bogaerts
ACS Sustainable Chem. Eng., 8, 9711-9720 (2020) and its supporting information

Plasma technology for CO2 conversion: A personal perspective on prospects and gaps.
A. Bogaerts and G. Centi
Front. Energy Res., 8, 111 (2020)

Predicted influence of plasma activation on nonoxidative coupling of methane on transition metal catalysts.
Y. Engelmann, P. Mehta, E.C. Neyts, W.F. Schneider and A. Bogaerts
ACS Sustainable Chem. Eng., 8, 6043−6054 (2020) and its supporting information

Dual-vortex plasmatron: a novel plasma source for CO2 conversion.
G. Trenchev and A. Bogaerts
J. CO2 Utilization, 39, 101152 (2020)

CO2 and CH4 conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2 and O2 affect the performance?
J. Slaets, M. Aghaei, S. Ceulemans, S. Van Alphen and A. Bogaerts
Green Chem., 22, 1366 (2020)

Nitrogen fixation with water vapor by nonequilibrium plasma: Towards sustainable ammonia production.
Y. Gorbanev, E. Vervloessem, A. Nikiforov and A. Bogaerts
ACS Sustainable Chem. Eng., 8, 2996-3004 (2020)

Plasma technology - a novel solution for CO2 conversion?
R. Snoeckx and A. Bogaerts
Chem. Soc. Rev., 46, 5805-5863 (2017) (Paper featered on the back cover page of the journal)

Plasma technology: An emerging technology for energy storage.
A. Bogaerts and E.C. Neyts
ACS Energy Lett., 3, 1013-1027 (2018)  (Invited feature article and selected to be featured in ACS Editors' Choice + Free Open Access)

Atmospheric pressure glow discharge for CO2 conversion: Model-based exploration of the optimum reactor configuration.
G. Trenchev, A. Nikiforov, W. Wang, St. Kolev and A. Bogaerts
Chem. Engng. J., 362, 830-841 (2019)

Modeling plasma-based CO2 and CH4 conversion in mixtuires with N2, O2 and H2O: The bigger plasma chemistry picture.
W. Wang, R. Snoecks, X. Zhang, M.S. Cha and A. Bogaerts
J. Phys. Chem. C, 122, 8704-8723 (2018) and its supporting information. (Invited feature article and selected for the cover of the journal).

Novel power-to-syngas concept for plasma catalutic reforming coupled with water electrolysis.
K. Li, J.-L. Liu, X.-S. Li, H.-Y. Lian, X. Zhu, A. Bogaerts and A.-M. Zhu
Chem. Engng. J., 353, 297-304 (2018)

Plasma streamer propagation in structured catalysts.
Q-Z. Zhang and A. Bogaerts
Plasma Sources Sci. Technol., 27, 105013 (2018)

Propagation of a plasma streamer in catalyst pores.
Q.-Z. Zhang and A. Bogaerts
Plasma Sources Sci. Technol., 27, 035009 (2018)

Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation.
K.M. Bal, S. Huygh, A. Bogaerts and E.C. Neyts
Plasma Sources Sci. Technol., 27, 024001 (2018)
(Selected by the editors of Plasma Sources Science and Technology as one of the “Highlights of 2018" in the "Papers" section)

Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry.
E. Cleiren, S. Heijkers, M. Ramakers and A. Bogaerts
ChemSusChem, 10, 4025-4036 (2017) and its supposting information.  (Cover feature of the journal)

Gliding arc plasmatron: providing an alternativemethod for carbon dioxide conversion.
M. Ramakers, G. Trenchev, S. Heijkers, W. Wang and A. Bogaerts
ChemSusChem, 10, 2642-2652 (2017) and its supporting information.

Plasma technology: An emerging technology for energy storage.
A. Bogaerts and E.C. Neyts
ACS Energy Lett., 3, 1013-1027 (2018)  (Invited feature article and selected to be featured in ACS Editors' Choice + Free Open Access)

Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling.
W. Wang, B. Patil, S. Heijkers, V. Hessel and A. Bogaerts
ChemSusChem, 10, 2145-2157 (2017) and its supporting information. (Paper featered on the cover page of the journal, as "cover profile" and "very important paper" of ChemSusChem).

The quest for value-added products from carbon dioxide and water in a dielectric barrier discharge: a chemical kinetics study.
R. Snoeckx, A. Ozkan, F. Reniers and A. Bogaerts
ChemSusChem, 10, 409-424 (2017) and its supporting information.

CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity?
R. Snoeckx, S. Heijkers, K. Van Wesenbeeck, S. Lenaerts and A. Bogaerts
Energy Environm. Sci., 9, 999-1011 (2016)

Can plasma be formed in catalyst pores?  A modeling investigation.
Y.-R. Zhang, K. Van Laer, E.C. Neyts and A. Bogaerts
Appl. Catal. B: Environm., 185, 56-67 (2016)

Plasma catalysis: synergistic effects at the nanoscale.
E.C. Neyts, K. Ostrikov, M.K. Sunkara and A. Bogaerts
Chem. Rev., 115, 13408-13446 (2015)

Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.
R. Aerts, W. Somers and A. Bogaerts
ChemSusChem, 8, 702-716 (2015)

Plasma-based conversion of CO2: current status and future challenges.
A. Bogaerts, T. Kozák, K. Van Laer and R. Snoeckx
Faraday Discuss., 183, 217-232 (2015)

Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model.
T. Kozák and A. Bogaerts
Plasma Sources Sci. Technol., 23, 045004 (2014)(Selected by the editors of Plasma Sources Science and Technology as one of the “Highlights of 2014")