Welcome to my personal website.  I am full professor at the Department of Chemistry, University of Antwerp. I am also head of the research group PLASMANT .

We are studying plasma and plasma-surface interactions by means of computer modeling and experiments, for various applications, i.e., CO2 and N2 conversion into value-added chemicals, plasma medicine, microelectronics, nanotechnology and analytical chemistry.

The research we perform on CO2 and N2 conversion by plasma and plasma catalysis includes modelling the plasma chemistry (by 0D chemical kinetics modelling, focussing on the role of CO2 or N2 vibrational levels for better energy efficiency, as well as on mixtures of CO2 with CH4, H2O, H2 and N2), modelling various plasma reactors (i.e., dielectric barrier discharges (DBDs) and packed bed DBDs, microwave plasmas, gliding arc discharges and atmospheric pressure glow discharges) by 2D or 3D fluid models, to improve the design for energy-efficient CO2 or N2 conversion, modelling plasma-catalyst interaction (i.e., penetration of plasma species  inside catalyst pores, and density functional theory (DFT) to study chemical reactions at the catalyst surface; the latter in collaboration with Erik Neyts), as well as experiments in three types of plasma reactors: (packed bed) DBDs (in collaboration with the Laboratory for Adsorption and Catalysis), reverse vortex flow gliding arc and an atmospheric pressure glow discharge with fast gas flow.

Our second large research topic is plasma medicine , focussing mainly on plasma for cancer treatment.  We perform experiments with a plasma jet on various types of cancer cells, both by direct treatment and indirect treatment by plasma activated medium.  These experiments are in collaboration with the groups PPES (S. Dewilde, Biomedical Sciences) and CORE  (E. Smits, Oncology, Faculty of Medicine and Health Care).  We also do computer simulations on the plasma chemistry inside the plasma jet, and its interaction with liquid medium, by 0D chemical kinetics models and 2D fluid models, as well as on the interaction with reactive plasma species with biomolecules, like DNA, proteins and phospholipids in the plasma membrane of cells, by means of molecular dynamics simulations or DFT-based methods, to better understand the underlying mechanisms of plasma medicine, in order to be able to improve the applications.

In the field of microelectronics and nanotechnology, we use a hybrid Monte Carlo – fluid model to describe the plasma chemistry and plasma-surface interactions in plasma reactors used for etching and film deposition, focussing nowadays mainly on cryogenic plasma etching.  We also perform classical molecular dynamics simulations for carbon nanotube growth, but this is the expertise of Erik Neyts.

Finally, for analytical chemistry  applications, we developed a comprehensive model for a glow discharge in dc, rf and pulsed operation mode, as well as for laser ablation (focussing on laser-solid interaction, plume expansion and plasma formation, as well as the gas dynamics in a laser ablation cell), but currently we are mainly focussing on inductively coupled plasma (ICP) sources, where we are developing a model for sample introduction into the ICP, including evaporation, ionisation and excitation.

Here, you can find more information about my research interests and topics, including some recent publication highlights, as well as the full publications list of my group PLASMANT and my brief CV.

Further resources

Find me on ResearchGate 

Click to see my ResearcherID 

Find me on Google Scholar