Onderzoeksgroep

Duurzame Energie- en Lucht- en Watertechnologie (DuEL)

Expertise

Het centrale onderzoeksthema is zonlichtgedreven fotochemie voor energie- en milieutoepassingen. Een belangrijke onderzoekslijn hierbinnen is die van Plasmon-gedreven fotokatalyse. Deze technologie wordt zeer holistisch benaderd. De focus light op het fundamentele niveau van de oppervlaktechemie (katalysatorsynthese, oppervlakte modificatie (bv. coatings), morfologisch ontwerp, simuleren van de licht-materie interactie, etc.), maar andere aspecten zoals reactor ontwerp, activiteit testing, sociale en economische aspecten worden ook uitvoerig bestudeerd. Het hoofddoel is om de fotokatalytische activiteit van transitiemetaaloxides te verbeteren door hun foton efficiëntie onder zonlicht te verhogen. Dit kan door ze te modificeren met Plasmon-actieve nanodeeltjes. Het is van cruciaal belang de onderliggende principes van deze technologie goed te begrijpen, teneinde succesvolle toepassingen te kunnen ontwikkelen. Een tweede onderzoekslijn focust zich op het toepassen van fotokatalytische technologie in verschillende domeinen: luchtzuivering, afbraak van fijnstof / roet, zelfreinigende en super-hydrofiele oppervlakken, en foto-elektrochemische cellen die luchtzuivering koppelen aan waterstofgasproductie.

Foto-elektrochemische celoptimalisatie voor luchtzuivering en waterstofproductie uit afvalgassen gedreven door zonlicht. 01/10/2021 - 30/09/2025

Abstract

De productie van alternatieve brandstoffen en de bescherming van onze leefomgeving zijn twee van de meest intensief bestudeerde onderwerpen. Efficiënte productie van betaalbare alternatieve brandstoffen vereist de ontwikkeling van nieuwe materialen en de implementatie van nieuwe methoden. Anderzijds vereist het elimineren van gevaarlijke stoffen uit afvalgassen en lucht nieuwe milieuvriendelijke technologieën. In dit project zullen we beide problemen tegelijkertijd aanpakken door volledig functionele foto-elektrochemische systemen te ontwikkelen die organische verontreinigende stoffen in afvalgassen aan de ene kant van het apparaat afbreken (fotoanode), terwijl aan de andere kant waterstofgas wordt geproduceerd (kathode). Waar de zuurstofevolutiereactie vaak het knelpunt is bij conventionele foto-elektrochemische watersplitsing, wordt dit probleem hier omzeild door organische verontreinigende stoffen te gebruiken als elektronendonoren, die gemakkelijker kunnen worden geoxideerd dan water. De drijvende kracht achter het hele proces is rechtstreeks zonlicht. Daarom zullen eerst meer zonlichtactieve fotoanodematerialen worden gesynthetiseerd. Na rigoureuze karakterisering en screening van hun fotoactiviteit, worden deze katalysatoren geïntegreerd in een volledig functionele foto-elektrochemische testopstelling, waarmee alle relevante intrinsieke kinetische en massaoverdrachtsparameters kunnen worden afgeleid. Deze laatste worden gebruikt als input voor een multiphysics computational fluid dynamics (CFD) -model waarmee de gehele proceswerking en het foto-elektrochemische celontwerp op een beheersbare manier en zonder excessieve kosten kunnen worden verbeterd. Uiteindelijk zal op basis van de resultaten van de CFD-studie een demonstratie-eenheid op laboschaal worden gebouwd om het toepassingspotentieel van deze multifunctionele zonlichtgedreven technologie aan te tonen.

Onderzoeker(s)

Onderzoeksgroep(en)

Artificiële chathraten voor veilige opslag, transport en vrijstelling van waterstof II (ARCLATH II) 01/07/2021 - 31/12/2023

Abstract

Het ARCLATH-2 project heeft als doel een antwoord te bieden aan bestaande nadelen inzake veilig transport en opslag van waterstof via het ontwikkelen van een nieuwe concept gebaseerd op clathraten. Na vooronderzoek tijdens het ARCLATH-1 project is bewezen dat dit concept werkt en dat waterstof inderdaad kan opgeslagen worden in clathraten bij technische en economische relevante condities, zoals druk en temperatuur. In dit ARCLATH-2 vervolgproject zal getracht worden de waterstof opslagcapaciteit te maximaliseren bij gelijkaardige druk en temperatuur condities. Tevens zal binnen dit project een praktisch proces ontwikkeld worden voor reversibele waterstofopslag en -afgifte gebaseerd op 'pressure swing cycling' technologie op laboschaal.

Onderzoeker(s)

Onderzoeksgroep(en)

Titaniumdioxide bekent kleur - gekleurde titania en hun geavanceerde karakterisatie voor gebruik in CO2 reductie en sensortoepassingen 01/01/2021 - 31/12/2024

Abstract

Materialen gebaseerd op titaniumdioxide (titania) zijn halfgeleiders met vele verscheiden toepassingen in chemische katalyse, elektrochemische sensortechnologie, voedselindustrie, energieconversie, en vele andere. Een groot deel van de toepassingen zijn gebaseerd op de vorming van een elektron en gat in de titania door absorptie van licht in het UV gebied. Dit beperkt echter heel veel praktische toepassingen, vermits zonlicht maar een beperkte UV inhoud heeft. Gekleurde titania, zoals grijze en zwarte titania, kunnen gevormd worden door thermische, chemische of sonochemische reductiemethoden. Alhoewel deze materialen zichtbaar licht absorberen, spreken studies in de vakliteratuur elkaar tegen over de activiteit van deze gekleurde materialen en de mechanismes die hiertoe leiden. Er is geen consensus over de optimale synthese paden om bepaalde gunstige materiaaleigenschappen te versterken. De grote heterogeniteit van gekleurde titania en hun syntheses gerapporteerd in de vakliteratuur verhindert het opstellen van een correlatie tussen synthese, elektronische structuur en activiteit. In de voorliggende geconcerteerde actie, zullen we de reductiecondities van poreuze titania op een gecontroleerde manier veranderen en tegelijk een veelvoud aan parameters bepalen, elektronenvallen, species die geadsorbeerd zijn aan het oppervlak, bulkdefecten, bandkloof, polymorfen en poriegroottes. We zullen de resultaten ook direct linken aan de specifieke activiteit van deze materialen. Hiertoe zullen we de capaciteit voor fotokatalytische reductie van CO2 meten en de toepasbaarheid van het materiaal als elektrodemateriaal in de elektrochemische detectie van fenolische verbindingen in water. Met deze aanpak, garanderen we dat de resultaten van de verschillende experimenten direct kunnen vergeleken en gecorreleerd worden. Dit zal toelaten om de sleutelfactoren te ontrafelen die de relatie tussen synthese, elektronische en geometrische structuur en activiteit van gekleurde titania bepalen. Deze kennis zal dan vertaald worden in optimale synthesecondities voor de hier bestudeerde toepassingen die belangrijk zijn voor duurzame chemie en ontwikkeling. Het voorliggende project maakt gebruik van de unieke complementaire expertise in de synthese, experimentele en theoretische karakterisatie en toepassingen van titaniumdioxide-gebaseerde materialen aanwezig aan de UAntwerpen.

Onderzoeker(s)

Onderzoeksgroep(en)

Zinc-co-Sink, dual pathway for safe rubber granulate recycling. 01/01/2021 - 31/12/2022

Abstract

Dit project wordt uitgevoerd door Universiteit Antwerpen en VITO, en ondersteund door het Opzoekingscentrum voor de Wegenbouw (OCW). Twee mogelijke oplossingen worden hierbij onderzocht om de vrijgave van zink uit rubbergranulaat te verhinderen; enerzijds door het coaten van de rubberkorrels (UAntwerpen) en anderzijds door de vrijkomende schadelijke bestanddelen op te vangen in een sorbent voor ze in de omgeving terecht komen (VITO). De eerste fase van het onderzoek bestaat uit een haalbaarheidsstudie naar de meest geschikte oplossing voor het gebruik van niet-gebonden rubbergranulaten in sonische kristallen (t.b.v. het Rubsonik project, geleid door OCW). Eventuele oplossingen kunnen nadien (fase II) echter verder ontwikkeld worden en ook dienen voor andere toepassingen van rubbergranulaat waar de milieuproblematiek een rol speelt. In het vervolgonderzoek zal eveneens aandacht besteed worden aan de recycleerbaarheid en duurzaamheid van beide oplossingen (invloed van veroudering en/of uitzonderlijke weersomstandigheden).

Onderzoeker(s)

Onderzoeksgroep(en)

Covalent Organic Frameworks: elektroden voor fotoelectrokatalytische omzetting van kooldioxide en VOCs in milieuvriendelijke brandstoffen. 01/11/2020 - 31/10/2023

Abstract

Om de grote maatschappelijke problemen,luchtvervuiling en alternatieve energie, aan te pakken combineren wij in dit project een luchtzuivering die samen gaat met de opwekkingvan groene energie op zonne-energie. Meer concreet betreft dit de foto-elektro-chemische ontbinding van vluchtige organische componenten (VOC) en CO2 om waterstof en mierenzuur te produceren. In de huidige processen, die grotendeels zijn gebaseerd op titania elektroden of edele metalen elektroden is het rendement beperkt. Dit is o.a. te wijten aan de beperkte bandbreedte van de elektroden en de snelle recombinatie van de vrijgestelde electronen. Wij zullen dit probleem aanpakken door metaalvrije en hoogporeuze elektroden te ontwikkelen die thermodynamisch zeer stabiel zijn. Naast het bijkomende voordeel dat de bandbreedte gemakkelijk kan worden aangepast, zijn deze materialen ook goedkoop. Het grote probleem in het gebruik van deze materialen is hun beperkte elektrische geleidbaarheid. Daarom zullen we deze nieuwe materialen (COFs - Covalent Organic Frameworks) covalent binden op "Carbon Fibre Cloth (CFC)". Twee groepen werken samen aan dit project: de COMOC groep in Gent is gespecialiseerd in de ontwikkeling van dergelijke innovatieve materialen en de DuEL group in Antwerpen zijn experten in dergelijke foto-elektro-katalytische cellen. Wij streven ernaar deze technologie tot een punt te brengen waar een inpassing in een industriële setting mogelijk wordt.

Onderzoeker(s)

Onderzoeksgroep(en)

Plasmonische sensoren voor de gevoelige en selectieve detectie van vluchtige organische componenten; 01/11/2020 - 31/10/2022

Abstract

De kwantitatieve detective van vluchtige organische componenten (VOCs) is een essentiële maar uitdagende taak met een brede waaier aan toepassingen: het vaststellen van ziektes op basis van ademanalyse, het opvolgen van de kwaliteit van binnenlucht, het verifiëren van de versheid van voedsel, het detecteren van explosieven, etc. Omwille van de tekortkomingen van huidige gassensoren is er een dringende vraag naar een nieuwe generatie van gevoelige en selectieve VOC sensoren. Dit doctoraatsproject mikt op een nieuw type van spectroscopische sensoren dat deze uitdaging aankan door een combinatie van (1) het ontwerp van licht-materie interacties op nanoschaal, (2) de groei van dunne poreuze lagen met een sterke VOC adsorptieaffiniteit, en (3) een biomimetische aanpak om de data van een reeks gedeeltelijk selectieve sensoren samen te voegen. Deze concepten zullen voor de eerste keer gecombineerd worden door de nauwe samenwerken tussen onderzoekers aan verschillende universiteiten en zullen gedemonstreerd worden in de detectie van drie schadelijke VOCs in gesimuleerde binnenlucht.

Onderzoeker(s)

Onderzoeksgroep(en)

InSusChem - Consortium voor Geïntegreerde Duurzame Chemie Antwerpen. 15/10/2020 - 31/12/2026

Abstract

Dit IOF consortium verbindt chemisten, ingenieurs, economisten en milieu-wetenschappers in een geïntegreerd team om maximale impact te genereren in de duurzame sleuteltechnologieën, materialen en reactoren, die een cruciale rol spelen in een duurzame chemische industrie en in de economische transitie naar een circulaire, grondstofefficiënte en koolstofneutrale economie (deel van de 2030 en 2050 doelen waarin Europa een leidende rol wil spelen). Innovatieve materialen, hernieuwbare chemische grondstoffen, nieuwe/alternatieve reactoren, technologieën en productie methoden zijn essentiële en centrale elementen om dit doel te bereiken. Door hun onderlinge verstrengeling is een multidisciplinaire, gecoördineerde inspanning als team cruciaal om succesvol te kunnen zijn. Bovendien is vroegtijdige voorspelling en identificatie van sterktes, opportuniteiten, zwakten en bedreigingen in levenscyclusanalyse, techno-economische analyse en duurzaamheidsbeoordeling een objectieve en noodzakelijke sleutel om duurzaamheid in te bouwen tijdens de design fase en om effectieve kennis-gedreven beslissingen te nemen en focus te houden op de grootste bijdragen aan duurzaamheid. Het consortium focust op duurzame chemische productie door efficiënt en alternatief energiegebruik, gekoppeld aan circulariteit, nieuwe chemische reactiepaden, technologieën, reactoren en materialen, die toelaten om alternatieve grondstoffen en energie te gebruiken. De kern van technologische expertise wordt ondersteund door expertise in simulaties, techno-economische en milieu impact beoordelingen en onzekerheidsidentificatie om de technologische ontwikkeling te versnellen via kennis gedreven design en vroeg stadige identificatie van sleutel onderzoek nodig voor een versnelde groei en maximale impact op duurzaamheid. Om deze doelen te bereiken, zijn de consortiumleden gegroepeerd over 4 samenhangende valorisatie programma's gefocust op sleutelelementen die de performantie bepalen en de chemische industrie en technologie hun meerwaarde geven en verder doen groeien: 1) hernieuwbare grondstoffen, 2) duurzame materialen en materialen voor duurzame processen, 3) duurzame processen die efficiënt gebruik maken van alternatieve hernieuwbare energie en/of circulaire chemische bouwstenen gebruiken; 4) innovatieve reactoren voor duurzame processen. Daarenboven zijn transversale sleutelexpertises geïntegreerd, die essentiële ondersteuning bieden en data gebaseerde beslissingen mogelijk maken in de 4 valorisatie programma's door simulaties, techno-economische en milieu-impact beoordelingen en onzekerheidsanalyses.

Onderzoeker(s)

Onderzoeksgroep(en)

Foto-elektrochemische behandeling van methaanafval met gelijktijdige energierecuperatie. 01/10/2020 - 30/09/2022

Abstract

Methaan is een belangrijk broeikasgas waarvan de concentratie sterk toeneemt. Als tweede belangrijkste veroorzaker van het broeikaseffect, moeten we naast het voorkomen van emissies ook zorgen voor het verwijderen van methaan emissies. In dit project wordt een fotoelektrochemische cel bestudeerd. In deze PEC wordt de methaanafbraak aan de foto anode gecombineerd met waterstof productie aan de anode. Met enkel zonlicht als duurzame energie bron worden er dus schadelijke gassen afgebroken en simultaan H2 geproduceerd. In samenwerking met Wuhan University of Technology worden foto anode materialen, nanostructuren en synthese strategieën onderzocht. De samenstelling van verschillende gas mengsels en de invloed van de reactiecondities op de cel performantie en de materialen worden bestudeerd. De foton gedreven omzetting in een PEC cel waarbij simultaan CH4 gemineraliseerd en H2 geproduceerd wordt is een beloftevolle duurzame technologie.

Onderzoeker(s)

Onderzoeksgroep(en)

Hoge resolutie Raman spectroscopie en beeldvorming. 01/05/2020 - 30/04/2024

Abstract

Hoge resolutie Raman beeldvorming is een veelzijdige beeldvormingstechniek die gedetailleerde kaarten oplevert over de chemische samenstelling van zowel technische als biologische monsters. De apparatuur in al zijn facetten beschreven in deze aanvraag is nog niet beschikbaar aan UAntwerpen en is sterk complementair bij de high-end chemische analysetechnieken (XRF, XRD, IR, SEM-EDX-WDX, LA-ICP-MS) reeds beschikbaar aan UAntwerpen voor materiaalkarakterisering. Hoge resolutie Raman beeldvorming zal met hoge resolutie de laatste details (structurele vingerafdruk) van het materiaal prijs geven. De Raman-microscoop moet zo veelzijdig mogelijk zijn, om potentiële toekomstige technologische verbeteringen te ondersteunen.

Onderzoeker(s)

Onderzoeksgroep(en)

High-end elektronen paramagnetische resonantie instrumentatie voor katalyse en materialenkarakterisatie. 01/05/2020 - 30/04/2024

Abstract

Elektronen paramagnetische resonantie (EPR) biedt een uniek instrument voor de karakterisatie van paramagnetische systemen in biologische en synthetische materialen. EPR wordt gebruikt in diverse onderzoeksgebieden, zoals biologie, chemie, fysica, geneeskunde en materiaalwetenschappen. Het is een verzamelnaam voor verschillende technieken, waarbij de gepulste EPR methoden de veelzijdigste zijn en gedetailleerde informatie kunnen geven. De UAntwerpen heeft een gepulste en hoog-veld EPR-faciliteit die uniek is in België. De basis continue-golf EPR instrumentatie is echter dringend aan een upgrade toe. Verder werd recent een nieuw tijdperk in EPR spectroscopie ingeluid dankzij de technische ontwikkeling van AWGs (arbitrary waveform generators) met een kloksnelheid hoger dan een gigahertz. Deze AWGs laten nieuwe experimenten met specifieke pulsvormen toe waardoor veel gedetailleerdere informatie over de bestudeerde systemen kan bekomen worden. Bovendien verhoogt het de gevoeligheid en spectrale breedte van de EPR methoden enorm. Dit is belangrijk voor de studie van nanogestructureerde materialen en voor de detectie van actieve sites die transiënt gevormd worden tijdens katalyse, device-werking of reacties in biologische cellen, onderwerpen die van groot belang zijn voor het aanvragende consortium. De aangevraagde uitbreiding van de EPR faciliteit is essentieel om er voor te zorgen dat EPR aan de UAntwerpen in het voorveld blijft van dit heel snel veranderend onderzoeksgebied.

Onderzoeker(s)

Onderzoeksgroep(en)

Zonlicht actieve zelfreinigende en luchtzuiverende coatings op basis van titania met ingebedde plasmons. 01/11/2019 - 31/10/2023

Abstract

Door de grote bijdrage van roet aan de klimaatsverandering en de serieuze gezondheidsgevolgen, willen wij de zelf-reinigende en luchtzuiverende werking van fotokatalytische coatings onderzoeken en optimaliseren. Deze coatings kunnen simultaan roet oxideren en NOx reduceren zodat het gecoatte oppervlak proper blijft en de lucht zuiver. Voor fotokatalytische oxidatie wordt vaak TiO2 gebruikt als foto-actief materiaal. Het grootste nadeel van deze fotokatalysator is dat TiO2 enkel actief is in de UV regio van het zonlichtspectrum. Om de fotorespons uit te breiden tot het zichtbare licht, zijn edelmetaal nanopartikels (NPs) veelbelovend. In dit project zullen goud en zilver NPs samengevoegd worden om individuele minpunten te overkomen. Zo worden stabiele NPs met regelbare plasmonische eigenschappen bekomen. Deze plasmonische NPs worden ingebed in de TiO2 coatings om de fotorespons ervan uit te breiden, zodat zowel het UV als het zichtbare deel van het zonlicht gebruikt kunnen worden. Het plasmoneffect en de zelf-reinigende en luchtzuiverende werking van de coatings zullen bestudeerd worden in het laboratorium aan de hand van FTIR spectroscopie, contacthoekmetingen, digitaal beeldanalyse en actiespectrumanalyse. Dit wordt uitgebreid met valideringsexperimenten in steden, die de aandacht zullen trekken van het brede publiek en mogelijke investeerders. Deze technologie zal ontwikkeld worden van TRL 2/3 tot 5 inclusief kosteneffectiviteitsanalyse en verkenning van recyclage opties.

Onderzoeker(s)

Onderzoeksgroep(en)

Zongedreven waterstofproductie uit zeewater met behulp van gestabiliseerde plasmonversterkte fotokatalysatoren. 01/11/2019 - 31/10/2023

Abstract

In 2012 stootte de internationale scheepvaart ca. 800 Mton CO2, 18.6 Mton NOx en 10.6 Mton SOx uit. Verder wordt verwacht dat deze emissies nog zullen toenemen met 250% tegen 2050 als er geen actie ondernomen wordt. Daarom is academisch onderzoek naar groenere alternatieven nodig en H2 blijkt hiervoor een veelbelovende kandidaat. In dit project zal abundant zeewater (i.p.v. het schaarse zuiver water) gesplitst worden in H2 en O2 m.b.v. TiO2-gebaseerde fotokatalysatoren. Het voornaamste nadeel van TiO2 is echter dat het enkel geactiveerd wordt door ultraviolet (UV) licht wat minder dan 5% van het zonnespectrum op aarde bedraagt. Als oplossing hiervoor zal het TiO2 worden gemodificeerd met geordende bimetallische goud-zilvernanopartikels (NP's) die sterk interageren met het zonlicht. De langetermijnstabiliteit, zelfs in zout milieu, wordt hierbij gegarandeerd door de plasmonische NP's te bedekken met een beschermende laag m.b.v. nat-chemische synthesetechnieken. De schil fungeert ook als een scheidingslaag tussen de plasmonische kernen en bepaalt hierdoor mee de interpartikelafstand en de vorming van hotspots. Alle structuren zullen worden gekarakteriseerd tot op nanoschaal en actiespectrumanalyse zal worden uitgevoerd i.s.m. de universiteit van Hokkaido. Daar zeewatersplitsing slechts recent in de aandacht is gekomen, kent het gebruik van plasmonische nanostructuren geen precedenten. Dit betekent dat de resultaten van dit project tot ver na de state-of-the-art zullen reiken.

Onderzoeker(s)

Onderzoeksgroep(en)

Semi-actieve fotokatalysetechnologie voor de bestrijding van stedelijke luchtverontreiniging. 01/10/2019 - 30/04/2022

Abstract

Het doel van dit project is het ontwikkelen van semi-actieve fotokatalytische systemen voor het bestrijden van luchtvervuiling in stedelijke omgevingen. Met semi-actieve systemen worden fotokatalytische systemen bedoeld met (i) een verhoogde functionaliteit (verbeterde activiteit onder zonlicht), (ii) waarbij de overdracht van polluenten naar de fotokatalytische oppervlakken wordt verbeterd (door natuurlijke of gedwongen convectie te induceren) en (iii) waarbij het zonlicht optimaal wordt gebruikt door het optimaliseren van de ontvangen lichtintensiteit. De hypothese is dat systemen die aan deze voorwaarden voldoen superieur zijn aan zogeheten passieve fotokatalytische systemen. In dit project zal een veelbelovende plasmonversterkte fotokatalytische coating, ontwikkeld door onze onderzoeksgroep, worden gekarakteriseerd in termen van gevoeligheid voor zonlicht. De relevante reactiekinetische parameters zullen hierbij worden bepaald en gebruikt voor het ontwerpen van semi-actieve luchtzuiveringssystemen op basis van computational fluid dynamics (CFD) -modellen, waardoor de noodzaak aan uitgebreide experimenten wordt beperkt. Het meest belovende systeem zal vervolgens op schaalmodel worden gebouwd en uitgebreid worden getest onder gecontroleerde omstandigheden. Tenslotte zal een demo systeem gebouwd worden in een realistische omgeving. Het uiteindelijke doel van het IOF-POC project is om de haalbaarheid van semi-actieve fotokatalytische systemen aan te tonen en zo de interesse van potentiële industriële partners en andere belanghebbenden te wekken.

Onderzoeker(s)

Onderzoeksgroep(en)

Geordende bimetallische plasmon-nanostructuren voor fotokatalytische roetafbraak. 01/10/2018 - 30/09/2022

Abstract

Roet, een essentieel bestanddeel van fijnstof, wordt verantwoordelijk geacht voor een verdrievoudiging van het aantal vroegtijdige overlijdens tegen 2060. Daarom wordt in dit fundamenteel project de ontwikkeling van een efficiënte fotokatalysator bestudeerd voor roetafbraak, met (zon)licht als enige energie-input. Fotokatalytische oxidatie wordt meestal uitgevoerd met TiO2 als lichtgevoelig materiaal. Het grote nadeel van TiO2 is de grote bandkloof van deze halfgeleider, die binnen het zonnespectrum enkel overbrugd kan worden door de energie-inhoud van UV-licht. Om de activiteit uit te breiden naar het zichtbaar licht, kan het katalysatoroppervlak gemodificeerd worden met edelmetaal nanopartikels die sterke optische lokale plasmonresonantie-effecten vertonen. In dit project worden stabiele bimetallische nanopartikels van goud en zilver gesynthetiseerd. Door beide metalen met elkaar te combineren, kunnen hun individuele tekortkomingen vermeden worden, en kunnen bovendien de plasmonische eigenschappen makkelijk gestuurd worden over een breed golflengtegebied. Deze bimetallische nanopartikels zullen als een geordende structuur georganiseerd worden, en vervolgens worden gekarakteriseerd van bulk- tot nanoschaal. Een deel hiervan in samenwerking met het Institute for Catalysis van Hokkaido University, Japan. Het effect van plasmonen op het mechanisme van fotokatalytische roetafbraak wordt op een fundamenteel niveau bestudeerd via in-situ FTIR spectroscopie. Daarnaast worden meer grootschalige demonstratie-experimenten opgezet om ook aan het brede publiek de relevantie van dit onderzoek te kunnen demonstreren.

Onderzoeker(s)

Onderzoeksgroep(en)

Fotokatalytisch gecoate hygiënische stootranden. 01/03/2020 - 01/11/2021

Abstract

Het doel van dit POC project is het evalueren en verbeteren van de fotokatalytische eigenschappen van hygiënische stootranden. Deze fotokatalytische activiteit verwijst naar vier specifieke eigenschappen: (1) zelfreinigend, (2) luchtzuiverend, (3) antibacterieel en (4) kleurvast. Om de verschillende modificatiestrategiën objectief te kunnen testen en vergelijken, zullen vier (ISO) gestandaardiseerde testprocedures worden geïnstalleerd, en controle-experimenten op bestaande materialen zullen worden uitgevoerd. Hierna zullen drie verschillende modificatiemethodes worden toegepast, waarvan de eerste gebaseerd is op een bestaande gepanteerde coatingmethode ontwikkeld door DuEL, terwijl de overige twee strategiën volledig nieuw zijn. De modificatie wordt als geslaagd beschouwd als ze leidt tot een stevig aangehechte deklaag die de originele materiaaleigenschappen van de stootrand niet aantast. Als ten minste één van de voorgestelde strategiën beloftevol blijkt, wordt het project verdergezet in een tweede fase waarin de aangepaste materialen in meer detail worden gekarakteriseerd, bijkomend worden gemodificeerd met plasmon-actieve nanodeeltjes en experimenteel getest. Daarna wordt een valorizatiecampagne ingezet die inhoudelijk gedreven wordt door de business case van de industriële partner. Een succesvolle toepassing van de resultaten van dit project zal het mogelijk maken om te voldoen aan zeer strikte hygiënische veiligheidsnormen en op die manier ook nieuwe marktsegmenten aan te boren, zoals de voedingssector, farmaceutische sector en gezondsheidssector.

Onderzoeker(s)

Onderzoeksgroep(en)

Dioxide naar monoxide: Innovatieve katalyse voor de omzetting van CO2 naar CO (D2M). 01/01/2020 - 30/09/2021

Abstract

Het doet van dit project is om verschillende (katalytische) technologieën te ontwikkelen voor de productie van CO als chemische component via de conversie vanuit CO2. De verschillende technologieën zullen vergeleken worden om hun potentieel te evalueren, en om veelbelovende strategieën te definiëren voor verdere ontwikkeling en opschaling.

Onderzoeker(s)

Onderzoeksgroep(en)

Project website

Synthetische clathraten voor veilige opslag, transport en afgifte van waterstof (ARCLATH). 01/01/2020 - 30/06/2021

Abstract

In dit project wordt een proof-of-concept geleverd voor de opslag van waterstof in clathraten, een schatting gemaakt van het toepassingspotentieel en een interdisciplinair onderzoeksconsortium voor clathraatonderzoek opgericht. De haalbaarheid van waterstofopslag in clathraathydraten zal bestudeerd worden in technisch en economisch relevante omstandigheden van temperatuur en druk. De centrale onderzoekshypothese is om waterstofclathraten te stabiliseren en hun vorming zodanig te katalyseren dat een nieuwe technologie voor waterstofopslag kan ontwikkeld worden. De concrete doelstelling is om 5 wt% en 30 g/l opslagcapaciteit bij temperaturen boven 2C en een druk lager dan 100 bar te bereiken.

Onderzoeker(s)

Onderzoeksgroep(en)

Rechtstreekse bepaling van de waterstofgasopbrengst na foto-elektrochemische behandeling van vluchtige organische stoffen. 01/01/2019 - 31/12/2021

Abstract

Het doel van dit project is het tegelijk aanpakken van twee belangrijke maatschappelijke noden: duurzame energieproductie en schone lucht. TiO2-gebaseerde fotokatalyse werd al met succes toegepast voor zowel lichtgedrevene waterstofgaswinning, als afbraak van organische vervuilende stoffen. Dit project heeft tot doel beide aspecten te combineren in één toepassing, waarbij dus een deel van de energie uit de vervuilende moleculen kan gerecupereerd worden als waterstofgas, terwijl de polluenten zelf worden afgebroken tot CO2. Dit proces wordt uitgevoerd in een foto-elektrochemische cel, met oxidatie van vluchtige organische stoffen ter hoogte van de fotoanode, en waterstofproductie aan de kathode. Om de celwerking goed te kunnen karakteriseren, is het cruciaal om de waterstofgasvorming precies en in-lijn te kunnen meten. Dit krediet wordt daarom aangewend voor de aankoop van een gaschromatograaf met BID (barrier ionization discharge) detectie, welke toelaat de waterstofconcentraties accuraat op te meten.

Onderzoeker(s)

Onderzoeksgroep(en)

Foto-elektrochemische behandeling van methaanafval met gelijktijdige energierecuperatie. 01/10/2018 - 30/09/2020

Abstract

Methaan is een belangrijk broeikasgas waarvan de concentratie sterk toeneemt. Als tweede belangrijkste veroorzaker van het broeikaseffect, moeten we naast het voorkomen van emissies ook zorgen voor het verwijderen van methaan emissies. In dit project wordt een fotoelektrochemische cel bestudeerd. In deze PEC wordt de methaanafbraak aan de foto anode gecombineerd met waterstof productie aan de anode. Met enkel zonlicht als duurzame energie bron worden er dus schadelijke gassen afgebroken en simultaan H2 geproduceerd. In samenwerking met Wuhan University of Technology worden foto anode materialen, nanostructuren en synthese strategieën onderzocht. De samenstelling van verschillende gas mengsels en de invloed van de reactiecondities op de cel performantie en de materialen worden bestudeerd. De foton gedreven omzetting in een PEC cel waarbij simultaan CH4 gemineraliseerd en H2 geproduceerd wordt is een beloftevolle duurzame technologie.

Onderzoeker(s)

Onderzoeksgroep(en)

Project website

Synergie van plasmon structuren, herkenningselementen en lichtgevoelige materialen voor de elektrochemische detectie van farmaceutische componenten. 01/08/2018 - 31/07/2021

Abstract

Het hoofddoel van het PLASMON-ELECTROLIGHT-project is het ontwikkelen van een efficiënte detectiestrategie voor de bepaling van geneesmiddelen. De detectietechniek zal worden ontwikkeld op basis van een originele foto-elektrochemische detectiestrategie die wordt versterkt door gebruik van geavanceerde fotogevoelige materialen, plasmonische structuren en affiniteitsherkenning. De fotoactieve hybride materialen moeten zorgvuldig worden ontworpen door een rationele keuze van fotogevoelige materialen en metallische nanostructuren, theoretische modellering en experimentele correlaties. Vervolgens worden de materialen gecombineerd met bio-herkenningselementen en gebruikt als foto-elektrochemische sensor. Onze doelstellingen omvatten tevens een beter begrip van het mechanisme voor plasmonische verbetering van de activiteit van fotogevoelige materialen. Dit project zal bijdragen aan verschillende gebieden van sensor ontwikkeling, materiaalwetenschappen en energieconversie.

Onderzoeker(s)

Onderzoeksgroep(en)

    Zeefdruk faciliteiten en hoge resolutie Raman beeldvorming van (geprinte) oppervlakken en materialen. 01/05/2018 - 30/04/2021

    Abstract

    Dit Hercules-voorstel omvat de installatie van zeefdrukfaciliteiten. Zeefdrukfaciliteiten stellen UAntwerpen in staat om te pionierswerk uit te voeren in het gebied van elektronica, sensoren en fotokatalyse door (1) ontwikkeling van unieke (foto) sensoren / detectoren (bijv. elektrochemische sensoren, fotovoltaïsche cellen, fotokatalyse) door printen van (half) geleidende materialen op substraten, (2) onderdelen van modules Internet of Things te ontwerpen met meer flexibiliteit. Dit laat toe om tegelijkertijd een uniek valorisatiepotentieel en IP-positie te creëren.

    Onderzoeker(s)

    Onderzoeksgroep(en)

      Infrastructuur voor het visualiseren processen op nanoschaal in gas-/damp- of vloeistofomgeving. 01/05/2018 - 30/04/2021

      Abstract

      Processen in energietoepassingen en katalyse, zowel als biologische processen, worden steeds belangrijker door de toenemende aandacht in de samenleving voor duurzame energiebronnen en technologieën. Voor een grondig begrip van deze processen, moeten we ze kunnen volgen tot op nano- of atomaire schaal. Transmissie elektronenmicroscopie (TEM) is hiervoor de optimale techniek, maar in zijn conventionele opstelling is het nodig dat het studieobject in ultrahoog vacuüm wordt geplaatst, wat de studie van processen onmogelijk maakt. Binnen deze aanvraag stellen we daarom voor om de studieobjecten met behulp van omgevingshouders in een gas/damp of vloeistofomgeving in de microscoop te plaatsen (en dit bij verschillende temperaturen). Op deze manier wordt beeldvorming, spectroscopie en diffractie van processen in reële tijd mogelijk. Deze infrastructuur zal verschillende onderzoeksgroepen binnen de Universiteit Antwerpen toelaten om innovatieve experimenten en vernieuwend onderzoek uit te voeren waarvoor de kennis van processen en interacties nodig is, zoals de interactie van vaste stoffen met gassen/dampen of vloeistoffen voor katalyse, de processen die voorkomen bij het laden en ontladen van batterijen, de nucleatie en groei van nanodeeltjes en de gedetailleerde ontrafeling van intracellulaire pathways in biologische processen relevant voor toekomstige cel-gebaseerde therapieën.

      Onderzoeker(s)

      Onderzoeksgroep(en)

      Plasmonversterkte fotokatalytische zelfreinigende oppervlakken. 02/04/2018 - 30/09/2019

      Abstract

      Het doel van dit project is de ontwikkeling van een marktrijpe zelfreinigende deklaag. Het zelfreinigend effect is te danken aan de fotokatalytische werking van de deklaag. Hierbij worden vervuilende organische stoffen afgebroken onder invloed van licht en een halfgeleider (hier TiO2) als katalysator. De grote uitdaging van dit project bestaat erin om de lichtabsorptie-efficiëntie van de deklaag gevoelig te verbeteren. Tegelijk moet de deklaag zo transparant en kostenefficiënt mogelijk gehouden worden. Na het optimaliseren van de verschillende syntheseparameters en het evalueren van de kosteneffectiviteit, is het ultieme doel een aantal concrete prototypes te ontwikkelen die kunnen illustreren hoe deze deklaag kan toegepast worden in de bouwsector (bv. als zelfreinigende ramen in wolkenkrabbers), als transparante dekplaten op zonnepanelen, of als zelfreinigende wanden voor aquaria.

      Onderzoeker(s)

      Onderzoeksgroep(en)

      Prijs van de Onderzoeksraad 2017 - Prijs Verbeure: Toegepaste en Exacte Wetenschappen. 01/12/2017 - 31/12/2018

      Abstract

      Prijs van de Onderzoeksraad 2017 - Prijs Verbeure: Toegepaste en Exacte Wetenschappen. Het budget dat gepaard gaat met deze prijs wordt aangewend voor de verdere uitbouw en disseminatie van het onderzoek naar het gebruik van plasmoneffecten om fotokatalyse efficiënter te maken. Zowel het achterhalen van het fundamenteel werkingsmechanisme, als het zo breed mogelijk toepassen van de technologie zijn speerpunten.

      Onderzoeker(s)

      Onderzoeksgroep(en)

      Energie uit methaanafval: katalysatorkeuze, parameterstudie en in-situ onderzoek van een foto-elektrochemische cel. 01/10/2017 - 30/09/2018

      Abstract

      Methaan is een broeikasgas dat 23 keer sterker is dan CO2, en dan bovendien sterker toeneemt in de atmosfeer. Methaan levert dus de tweede grootste bijdrage tot het versterkt broeikaseffect, en vraagt dus om duurzame oplossingen om de stijgende methaanconcentratie in de atmosfeer aan te pakken. In dit project wordt een foto elektrochemische cel (PEC) bestudeerd, die methaan uitstoot aan de bron kan aanpakken. In deze PEC gebeurt er aan de foto anode een mineralisatie van methaan die resulteert aan de kathode in de uitstoot van waterstof. Beide processen worden dus gecombineerd in een toestel dat enkel zonlicht gebruikt als energiebron. In een eerste fase zal het foto anode materiaal bestudeerd worden, waarbij dus ook minder conventionele materialen, nano gestructureerde materialen en synthese strategieën aan bod komen. Dan zal de invloed van verschillende andere gassen (O2, CO2, NOx, H2O, NH3) in de methaan flow op de cel performantie en op de anode bestudeerd worden. Ten slotte wordt de invloed van de reactiecondities (temperatuur, flow en licht intensiteit) op de foto gebaseerde processen bestudeerd. Samengevat zal in dit project de foto elektrochemische technologie voor de energie efficiënte afbraak van methaan stromen tot waterstof bestudeerd worden.

      Onderzoeker(s)

      Onderzoeksgroep(en)

      Gemagnetiseerde plasmon-actieve katalysatoren voor fotochemische toepassingen. 01/04/2017 - 31/03/2018

      Abstract

      Praktische toepassingen van zonlicht-gedreven fotokatalytische reacties in de vloeistoffase hebben te kampen met twee belangrijke problemen: (i) beperkte absorptie van (zichtbaar) licht en (ii) problematische nabehandeling voor het afscheiden van de nano-gedimensioneerde katalysatoren. In dit BOF-KP wordt een technologie voorgesteld die beide problemen tegelijk aanpakt. Ten eerste zullen gestabiliseerde magnetische nanoclusters ontwikkeld worden die zeer vlot en effectief uit de suspensie kunnen gerecupereerd worden. Daarna worden hier plasmon-actieve nanopartikels/fotokatalysatoren aan vastgehecht met een uitgesproken UV-zichtbaar licht respons. Hierdoor zal de werkingskost van dergelijke processen sterk dalen omdat gratis zonlicht nu ten volle benut kan worden. Daarbij komt dat ook kosten gelinkt met katalysatorafscheiding verder in het proces vermeden worden. De magnetische plasmon-actieve fotokatalysatoren zullen getest worden in afvalwaterbehandeling (degradatie van fenol), terwijl magnetische plasmon-nanopartikels gebruikt zullen worden als katalysator voor de rechtstreekse foto-conversie van aniline tot di-azobenzeen. Het gebruik van dergelijke plasmon-nanopartikels voor rechtstreekse fotochemische conversies zorgt voor een groen alternatief voor de traditionele processen die uitgevoerd worden bij hoge temperatuur en/of druk, stoichiometrische hoeveelheden van specifieke chemicaliën vereisen en zo leiden tot ongewenste neven- en afvalstromen. De techniek die in dit BOF-KP wordt voorgesteld maakt enkel gebruik van gratis zonlicht als energiebron, een nano-katalysator die toch makkelijk kan gerecupereerd worden, er worden geen extra chemicaliën toegevoegd en de ganse reactie vindt plaats bij kamertemperatuur.

      Onderzoeker(s)

      Onderzoeksgroep(en)

      Fotokatalytische gaswasser als innovatieve luchtzuiveringstechnologie. 01/01/2016 - 31/12/2016

      Abstract

      Luchtvervuiling is één van de problemen die sinds begin 21e eeuw de aandacht getrokken heeft. Vluchtige organische componenten (VOC's), onder andere afkomstig van meubilair en bouwmaterialen, zijn belangrijke polluenten en de concentratie ervan in binnenlucht is vaak vele malen hoger dan in buitenlucht. Het doel is de complete mineralisatie van VOCs via fotokatalytische oxidatie, waarmee er gewerkt kan worden onder milde reactiecondities (lage druk en temperatuur). De methode die zal toegepast worden is de VOC's uit de gasfase transfereren naar de waterfase via een gaswasser om op deze manier een efficiënte fotokatalytische afbraak te garanderen onder UV licht. De lichtefficiëntie zal op twee verschillende methodes geoptimaliseerd worden. De eerste methode is via het modificeren van standaard TiO2 met plasmon-actieve zilver nanostructuren. Deze nanostructuren vertonen surface plasmon resonance (SPR) in het UV gebied, wat een significante elektrische near-field versterking met zich meebrengt. Door de opbouw van deze intense, lokale elektrische velden is er een sterke toename in het aantal gevormde ladingsdragers. De voorwaarde voor dit zogenaamde "lens effect", is dat er een overeenkomst moet zijn tussen de energie van de band gap van de halfgeleider en de energie geassocieerd met SPR, hetgeen het geval is tussen TiO2 en zilver nanostructuren. Een tweede methode om de UV lichtefficiëntie te verhogen, is via het reactordesign. Hiervoor zal er in de eerste plaats gebruik gemaakt worden van een gaswasser om de gecontamineerde luchtstroom te transfereren naar de waterfase. Op deze manier vind er een aanrijking plaats van de VOC's in de waterfase. Daarna zullen de VOC's fotokatalytisch afgebroken worden in de waterfase, hetgeen een veel beter gekend concept is dan afbraak in de gasfase. De VOC afbraak in de waterfase zal gebeuren via een geoptimaliseerd design, waarbij een UV transparante capillaire buis, die langs de binnenkant gecoat wordt met het foto-actieve materiaal en waardoor het water zal stromen, rond een UV lichtbron gewikkeld wordt. Op deze manier verhoogt de contacttijd met de katalysator aanzienlijk. Verder wordt ook het katalysatoroppervlak continu gewassen waardoor deactivatie vermeden wordt.

      Onderzoeker(s)

      Onderzoeksgroep(en)

      Aanmaak en karakterisering van plasmonactieve TiO2 anodes voor energieherwinning uit vervuilde luchtstromen. 01/02/2015 - 31/12/2015

      Abstract

      In dit "Klein Project" worden TiO2-gebaseerde foto-anodes gemodificeerd met plasmonactieve edelmetaalnanopartikels. Die zorgen voor het uitbreiden van het werkingsgebied naar het zichtbaar lichtdeel van het zonnespectrum. De belangrijkste doelstellingen van het project zijn de foto-elektrochemische karakterisering van de plasmonactieve TiO2 foto-anodes en het begrijpen van het fundamenteel werkingsmechanisme achter de plasmonversterking.

      Onderzoeker(s)

      Onderzoeksgroep(en)

      Zonlichtgedreven foto-elektrochemische waterstofproductie uit lucht vervuild met vluchtige organische componenten. 01/10/2014 - 30/09/2017

      Abstract

      Onze huidige maatschappij wordt gekenmerkt door twee grote noden: de zoektocht naar duurzame energie en een schone leefomgeving. In dit project wordt getracht tegelijk aan beide noden tegemoet te komen door de ontwikkeling van één enkel instrument. Vervuilde lucht wordt aangevoerd ter hoogte van de foto-anode van een foto-elektrochemische cel. De anode bestaat uit TiO2 en zorgt voor de fotokatalytische afbraak van de polluenten onder belichting. Gevormde protonen diffunderen naar de kathode van de cel, waar ze doormiddel van omgeleide foto-elektronen gereduceerd worden tot waterstofgas als duurzame bron van energie. Naast de ontwikkeling en optimalisatie van dergelijk instrument ligt de focus van het onderzoek op het gevoelig maken van de cel voor zichtbaar licht (zonlicht) door de incorporatie van edelmetaal nanopartikels die plasmon resonantie vertonen, en het begrijpen van de interacties tussen licht en deze materie.

      Onderzoeker(s)

      Onderzoeksgroep(en)

      Verhogen van fotokatalytische activiteit door middel van plasmon effecten van nanogedimensioneerde edelmetaalantennes. 01/10/2012 - 30/09/2014

      Abstract

      Fotokatalyse wordt bestudeerd als veelbelovende techniek voor de degradatie van VOC's uit de lucht. De efficiëntie van dergelijke reacties moet nog verbeterd kunnen worden. Hiervoor wordt in dit project de optische respons van het materiaal aangepast d.m.v. edelmetaal nanopartikels. Periodieke structuren van dergelijke partikels wekken lokale oppervlakte-plasmon-resonanties op, welke door hun aanpasbare golflengtegevoeligheid, de versterking van het elektromagnetisch veld en het concept van 'vertraagd licht', de fotokatalytische efficiëntie kunnen verhogen.

      Onderzoeker(s)

      Onderzoeksgroep(en)

      Verhogen van fotokatalytische activiteit door middel van plasmon effecten van nanogedimensioneerde edelmetaalantennes 01/10/2010 - 30/09/2012

      Abstract

      Fotokatalyse wordt bestudeerd als veelbelovende techniek voor de degradatie van VOC's uit de lucht. De efficiëntie van dergelijke reacties moet nog verbeterd kunnen worden. Hiervoor wordt in dit project de optische respons van het materiaal aangepast d.m.v. edelmetaal nanopartikels. Periodieke structuren van dergelijke partikels wekken lokale oppervlakte-plasmon-resonanties op, welke door hun aanpasbare golflengtegevoeligheid, de versterking van het elektromagnetisch veld en het concept van 'vertraagd licht', de fotokatalytische efficiëntie kunnen verhogen.

      Onderzoeker(s)

      Onderzoeksgroep(en)