Per- and polyfluoroalkyl substances (PFAS) are synthetic pollutants extensively used in various industrial and consumer products, leading to their widespread presence in the environment and organisms. Given the associated human health risks and significant ecological impact of PFAS contamination in soil, remediation is imperative. However, PFAS exhibit high persistence, posing substantial challenges to effective remediation. Current techniques target only select compounds, are costly, invasive, and lack efficiency in terrestrial environments. Previous studies showed the ability of plants to accumulate PFAS, suggesting phytoextraction as a promising alternative soil remediation method. Yet, knowledge regarding factors influencing plant PFAS uptake remains limited, with current research mainly focusing on single plant species. This project aims to identify general plant characteristics influencing PFAS uptake and optimal soil conditions for such uptake. Furthermore, we will assess the potential of earthworms (Lumbricus terrestris) to enhance the remediation potential of terrestrial plants. These objectives will be pursued through greenhouse experiments and validated by field experiments conducted near diverse PFAS-contaminated sites and under varying climatic conditions. This research will contribute to the understanding of the bioavailability of PFAS in soils to plants and the development of cost-effective and sustainable remediation strategies for PFAS- contaminated soil.

Promoter: Bervoets Lieven

Co-promoter: Bergmans Anne

Co-promoter: Groffen Thimo

Duration: 19/02/2024 - 18/02/2028