If needed, copies of publications can be obtained upon simple request to: priyanka.shaw@uantwerpen.be and/or karel.venken@uantwerpen.be

2024

761.

Plasma-assisted NH3 cracking in warm plasma reactors for green H2 production.
I. Fedirchyk, I. Tsonev, R. Quiroz Marnef and A. Bogaerts
Chem. Eng. J., 499, 155946 (2024) and supplementary material

760.

Plasma-catalytic dry reforming of CH4: Effects of plasma-generated species on the surface chemistry.
J. Sun, Q. Chen, W. Qin, H. Wu, B. Liu, S. Li and A. Bogaerts
Chem. Eng. J., 498, 155847 (2024) and supplementary data

759.

Hybrid plasma catalysis-thermal system for non-oxidative coupling of methane to ethylene and hydrogen.
R. Liu, E. Morais, D. Li, P. Liu, Q. Chen, S. Li, L. Wang, X. Gao, A. Bogaerts, H. Guo and Y. Yi
Chem. Eng. J., 498, 155733 (2024) and supplementary data

758.

Can post-plasma CH4 injection improve plasma-based dry reforming of methane?  A modeling study.
M. Albrechts, I. Tsonev and A. Bogaerts
Green Chem., 26, 9712-9728 (2024) (2024 Green Chemistry Hot Article)

757.

Plasma chemical looping: Unlocking high-efficiency CO2 conversion to clean CO at mild temperatures.
Y. Long, X. Wang, H. Zhang, K. Wang, W.-L. Ong, A. Bogaerts, K. Li, C. Lu, X. Li, J. Yan, X. Tu and H. Zhang
J. Amer. Chem. Soc. Au, 4, 2462-2473 (2024) and supplemental information

756.

Sorption-enhanced dry reforming of methane in a DBD plasma reactor for single-stage carbon capture and utilization.
R. Vertongen, G. De Felice, H. van den Bogaard, F. Gallucci, A. Bogaerts and S. Li
ACS Sustainable Chem. Eng., 12, 10841-10853 (2024) and supporting information

755.

Unlocking novel anticancer strategies: Bioactive hydrogels for local delivery of plasma-derived oxidants in an in ovo cancer model.
A. Espona-Noguera, M. Živani, E. Smits, A. Bogaerts, A. Privat-Maldonado and C. Canal
Micromol. Biosci., 2024, 2400213 (2024)

754.

CO2 conversion to CO via plasma and electrolysis: A techno-economic and energy cost analysis.
J. Osorio-Tejada, M. Escriba-Gelonch, R. Vertongen, A. Bogaerts and V. Hessel
Energy Environ. Sci., 17, 5883 (2024)

753.

Plasma-catalytic direct oxidation of methane to methanol over Cu-MOR: Revealing the zeolite-confined Cu2+ active sites.
H. Lv, S. Meng, Z. Cui, S. Li, D. Li, X. Gao, H. Guo, A. Bogaerts and Y. Yi
Chem. Eng. J., 496, 154337 (2024) and supporting information

752.

Effect of O2 on plasma-based dry reforming of methane: Revealing the optimal gas composition via experiments and modeling of an atmospheric pressure glow discharge.
S. Maerivoet, B. Wanten, R. De Meyer, M. Van Hove, S. Van Alphen and A. Bogaerts
ACS Sustainable Chem. Eng., 12, 11419−11434 (2024) and supporting information

751.

Plasma-based conversion of CO2 and CH4 into syngas: A dive into the effect of adding water.
B. Wanten, Y. Gorbanev and A. Bogaerts
Fuel, 374, 132355 (2024) and supplementary material

750.

Insight in NO synthesis in a gliding arc plasma via gas temperature and density mapping by laser-induced fluorescence.
F. Manaigo, A. Chatterjee, A. Bogaerts and R. Snyders
Plasma Sources Sci. Technol., 33, 075005 (2024)

749.

Plasma catalysis modeling: How ideal is atomic hydrogen for Eley−Rideal?
R. Michiels, N. Gerrits, E. Neyts and A. Bogaerts
J. Phys. Chem. C, 128, 11196-11209 (2024) and supporting information

748.

Importance of geometric effects in scaling up energy-efficient plasma-based nitrogen fixation.
I. Tsonev, H. Ahmadi Eshtehardi, M.-P. Delplancke and A. Bogaerts
Sustainable Energy Fuels, 8, 2191-2209 (2024)

747.

Improving molecule-metal surface reaction networks using the meta-generalized gradient approximation: CO2 hydrogenation.
Y. Cai, R. Michiels, F. De Luca, E. Neyts, X.Tu, A. Bogaerts and N. Gerrits
J. Phys. Chem. C, 128, 8611-8620 (2024) and supporting information

746.

Upscaling plasma-based CO2 conversion: Case study of a multi-reactor gliding arc plasmatron.
C. O’Modhrain, G. Trenchev, Y. Gorbanev and A. Bogaerts
J. Amer Chem Soc. Au, 4, 333-344 (2024) and supporting information

745.

Improving the performance of gliding arc plasma-catalytic dry reforming via a new post-plasma tubular catalyst bed.
W. Xu, L.C. Buelens, V.V. Galvita, A. Bogaerts and V. Meynen
J. CO2 Utiliz., 83, 102820 (2024) and supplementary material

744.

Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2.
S. Maerivoet, I. Tsonev, J. Slaets, F. Reniers and A. Bogaerts
Chem. Eng. J., 492, 152006 (2024)

743.

Effect of gas composition on temperature and CO2 conversion in a gliding arc plasmatron reactor: Insights for post-plasma catalysis from experiments and computation.
W. Xu, S. Van Alphen, V.V. Galvita, V. Meynen and A. Bogaerts
ChemSusChem, 2024, e202400169 (2024)

742.

Investigation of O atom kinetics in O2 plasma and its afterglow.
M. Albrechts, I. Tsonev and A. Bogaerts
Plasma Sources Sci. Technol., 33, 045017 (2024)

741.

Machine learning-driven optimization of plasma-catalytic dry reforming of methane.
Y. Cai, D. Mei, Y. Chen, A. Bogaerts and X. Tu
J. Energy Chem., 96, 153-163 (2024) and supporting information

740.

Plasma catalysis in ammonia production and decomposition: Use it, or lose it?
Y. Gorbanev, I. Fedirchyk and A. Bogaerts
Curr. Opinion Green Sustainable Chem., 47, 100916 (2024)

739.

Electrical stability and performance of a nitrogen−oxygen atmospheric pressure gliding arc plasma.
F. Manaigo, O. Samadi Bahnamiri, A. Chatterjee, A. Panepinto, A. Krumpmann, M. Michiels, A. Bogaerts and R. Snyders
ACS Sustainable Chem. Eng., 12, 5211-5219 (2024) and supporting information

738.

Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis.
R. De Meyer, Y. Gorbanev, R.-G. Ciocarlan, P. Cool, S. Bals and A. Bogaerts
Chem. Eng. J., 488, 150838 (2024) and supporting information

737.

Accurate reaction probabilities for translational energies on both sides of the barrier of dissociative chemisorption on metal surfaces.
N. Gerrits, B. Jackson and A. Bogaerts
J. Phys. Chem. Lett., 15, 2566-2572 (2024) and supporting information

736.

In situ plasma studies using a direct current microplasma in a scanning electron microscope.
L. Grünewald, D. Chezganov, R. De Meyer, A. Orekhov, S. Van Aert, A. Bogaerts, S. Bals, and J. Verbeeck
Adv. Mater. Technol., 2024, 2301632 (2024)

735.

Feasibility study of a small-scale fertilizer production facility based on plasma nitrogen fixation.
F. Manaigo, K. Rouwenhorst, A. Bogaerts and R. Snyders
Energy Convers. Manag., 302, 118124 (2024)

734.

Inhibiting recombination to improve the performance of plasma-based CO2 conversion.
K. Wang, S. Ceulemans, H. Zhang, I. Tsonev, Y. Zhang, Y. Long, M. Fang, X. Li, J. Yan and A. Bogaerts
Chem. Eng. J., 481, 148684 (2024) and supporting information

733.

Coupling the COST reference plasma jet to a microfluidic device: a computational study.
J. Bissonnette-Dulude, P. Heirman, S. Coulombe, A. Bogaerts, T. Gervais and S. Reuter
Plasma Sources Sci. Technol., 33, 015001 (2024)

732.

Plasma-based conversion of martian atmosphere into life-sustaining chemicals: The benefits of utilizing Martian ambient pressure.​​
S. Kelly, E. Mercer, Y. Gorbanev, I. Fedirchyk, C. Verheyen, K. Werner, P. Pullumbi, A. Cowley and A. Bogaerts
J. CO2 Util., 80, 102668 (2024)

731.

Modelling the dynamics of hydrogen synthesis from methane in nanosecond‐pulsed plasmas.
E. Morais and A. Bogaerts
Plasma Process. Polym., 21, e2300149 (2024)

730.

Liquid treatment with a plasma jet surrounded by a gas shield: Effect of the treated substrate and gas shield geometry on the plasma effluent conditions.
P. Heirman, R. Verloy, J. Baroen, A. Privat-Maldonado, E. Smits and A. Bogaerts
J. Phys. D: Appl. Phys., 57, 115204 (2024)

729.

Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion.
J. Slaets, B. Loenders and A. Bogaerts
Fuel, 360, 130650 (2024) and supporting information

728.

NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts.
S. Meng, S. Li, S. Sun, A. Bogaerts, Y. Liu and Y. Yi
Chem. Eng. Sci., 283, 119449 (2024) and supporting information

2023

727.

Correction: From the Birkeland–Eyde process towards energy-efficient plasma-based NOx synthesis: A techno-economic analysis.
K.H.R. Rouwenhorst, F. Jardali, A. Bogaerts and L. Lefferts
Energy Environ. Sci., 16, 6170 (2023)

726.

Injectable plasma-treated alginate hydrogel for oxidative stress delivery to induce immunogenic cell death in osteosarcoma.
M. Živanic, A. Espona-Noguera, H. Verswyvel, E. Smits, A. Bogaerts, A. Lin and C. Canal
Adv. Functional Mater., 2023, 231205 (2023)

725.

Avoiding solid carbon deposition in plasma-based dry reforming of methane.
O. Biodo, C.F.A.M. van Deursen, A. Hughes, A. van de Steeg, W. Bongers, M.C.M. van de Sanden, G. van Rooij and A. Bogaerts
Green Chem., 25, 10485 (2023)

724.

Characterization of non‑thermal dielectric barrier discharges for plasma medicine: From plastic well plates to skin surfaces.
A. Lin, M. Gromov, A. Nikiforov, E. Smits and A. Bogaerts
Plasma Chem. Plasma Process., 43, 1587-1612 (2023)

723.

Special issue on “Dielectric barrier discharges and their applications” in Commemoration of the 20th anniversary of Dr. Ulrich Kogelschatz’s work.
A. Bogaerts
Plasma Chem. Plasma Process., 43, 1281-1285 (2023)

722.​​

Plasma-assisted dry reforming of CH4: How small amounts of O2 addition can drastically enhance the oxygenate production-experiments and insights from plasma chemical kinetics modeling.
S. Li, J. Sun, Y. Gorbanev, K. van’t Veer, B. Loenders, Y. Yi, T. Kenis, Qi Chen and A. Bogaerts
ACS Sustainable Chem. Eng., 11, 15373−15384 (2023) and supporting information

721.​​

Effect of endohedral nickel atoms on the hydrophilicity of carbon nanotubes.
S. Matnazarova, U. Khalilov and M. Yusupov
Molecular Simulation, 49, 17, 1575–1581 (2023)

720.

Plasma-driven CO2 hydrogenation to CH3OH over Fe2O3/γ-Al2O3 catalyst.
S. Meng, L. Wu, M. Liu, Z. Cui, Q. Chen, S. Li, J. Yan, L. Wang, X. Wang, J. Qian, H. Guo, J. Niu, A. Bogaerts  and Y. Yi
AIChE J., 69, e181547 (2023) and supporting information

719.

Effects of nitro-oxidative stress on biomolecules: Part 1 - Non-reactive molecular dynamics simulations.
M. Ghasemitarei, T. Ghorbi, M. Yusupov, Y. Zhang, T. Zhao, P. Shali and A. Bogaerts
Biomolecules, 13, 1371 (2023)

718.

Effect of lipid oxidation on the channel properties of Cx26 hemichannels: A molecular dynamics study.
M.C. Oliveira, R.M. Cordeiro and A. Bogaerts
Arch. Biochem. Biophys., 746, 109741 (2023) and supporting information

717.

Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database.
A. Salden, M. Budde, C.A. Garcia-Soto, O. Biondo, J. Barauna, M. Faedda, B. Musig, C. Fromentin, M. Nguyen-Quang, H. Philpott, G. Hasrack, D. Aceto, Y. Cai, F. Azzolina Jury, A. Bogaerts, P. Da Costa, R. Engeln, M. Elena Gálvez, T.Gans, T. Garcia, V. Guerra, C. Henriques, M. Motak, M. Victoria Navarro, V.I. Parvulescu, G. Van Rooij, B. Samojeden, A. Sobota, P. Tosi, X. Tu and O. Guaitella
J. Energy Chem., 86, 318-342 (2023) and supplementary information

716.

Plasma-based CO2 conversion: How to correctly analyze the performance?
B. Wanten, R. Vertongen, R. De Meyer and A. Bogaerts
J. Energy Chem., 86, 180-196 (2023) and supplementary information I and supplementary information II

715.

Plasma‐treated liquids in medicine: Let's get chemical.
F. Tampieri, Y. Gorbanev and E. Sardella
Plasma Process. Polym., 20, e2300077 (2023)

714.

Atomic level mechanisms of graphene healing by methane-based plasma radicals.
U. Khalilov, M. Yusupov, G.B. Eshonqulov, E.C. Neyts and G.R. Berdiyorov
FlatChem, 39, 100506 (2023)

713.

Is a catalyst always beneficial in plasma catalysis?  Insights from the many physical and chemical interactions.
B. Loenders, R. Michiels and A. Bogaerts
J. Energy Chem., 85, 501-533 (2023) and supplementary information

712.

Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation.
S. Kelly, E. Mercer, R. De Meyer, R.-G. Ciocarlan, S. Bals and A. Bogaerts
J. CO2 Util., 75, 102564 (2023)

711.

Unraveling the transport properties of RONS across nitro-oxidized membranes.
D. Abduvokhidov, M. Yusupov, A. Shahzad, P. Attri, M. Shiratani, M.C. Oliveira and J. Razzokov
Biomolecules, 13, 1043 (2023)

710.

Nitrogen oxidation in a multi-pin plasma system in the presence and absence of a plasma/liquid interface.
M.A.S. Mahaleh, M. Narimisa, A. Nikiforov, M. Gromov, Y. Gorbanev, R. Bitar, R. Morent and N. De Geyter
Appl. Sci., 13, 7619 (2023)

709.

Assessing neutral transport mechanisms in aspect ratio dependent etching by means of experiments and multiscale plasma modeling.
P. Vanraes, S. P. Venugopalan, M. Besemer and A. Bogaerts
​Plasma Sources Sc. Technol., 32, 064004 (2023) and supplementary data

708.

How important is reactor design for CO2 conversion in warm plasmas?
R. Vertongen and  A. Bogaerts
J. CO2 Util., 72, 102510 (2023) and supporting information

707.

OrBITS: Label-free and time-lapse monitoring of patient derived organoids for advanced drug screening.
C. Deben, E.C. De La Hoz, M. Le Compte, P. Van Schil, J.M.H. Hendriks, P. Lauwers, S.K. Yogeswaran, F. Lardon, P. Pauwels, S. Van Laere, A. Bogaerts, E. Smits, S. Vanlanduit and A. Lin
Cell. Oncol., 46, 299-314 (2023) and supporting information (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12)

706.

Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance.
J. Wang, K. Zhang, M. Mertens, A. Bogaerts and V. Meynen
Appl. Cat. B: Environ., 337, 122977 (2023) and supporting information

705.

Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate.
F. Tampieri, A. Espona-Noguera, C. Labay, M.-P. Ginebra, M. Yusupov, A. Bogaerts and C. Canal
Biomat. Sci., 11, 4845–4858 (2023) and supporting information

704.

Enhanced NH3 synthesis from air in a plasma tandem-electrocatalysis system using plasma-engraved N‑doped defective MoS2.
J. Zheng, H. Zhang, J. Lv, M. Zhang, J. Wan, N. Gerrits, A. Wu, B. Lan, W. Wang, S. Wang, X. Tu, A. Bogaerts and X. Li
J. Amer. Chem. Soc. Au, 3, 1328-1336 (2023)

703.

Simulation of glow and arc discharges in nitrogen: Effects of the cathode emission mechanisms.
I. Tsonev, J. Boothroyd, St. Kolev and A. Bogaerts
Plasma Sources Sci. Technol., 32, 054002 (2023)

702.

Phototoxicity and cell passage affect intracellular reactive oxygen species levels and sensitivity towards non-thermal plasma treatment in fluorescently-labeled cancer cells.
H. Verswyvel, C. Deben, A. Wouters, F. Lardon, A. Bogaerts, E. Smits and A. Lin
J. Phys. D: Appl. Phys., 56, 294001 (2023)

701.

Challenges in unconventional catalysis.
A. Bogaerts, G. Centi, V. Hessel and E. Rebrov
Catalysis Today, 420, 114180 (2023)

700.

SF6 degradation in a γ‑Al2O3 packed DBD system: Effects of hydration, reactive gases and plasma‑induced surface charges.
Z. Cui, C. Zhou, A. Jafarzadeh, X. Zhang, Y. Hao, L. Li and A. Bogaerts
Plasma Chem. Plasma Process., 43, 635-656 (2023) and supporting information

699.

​Plasma-catalytic ammonia synthesis: Packed catalysts act as plasma modifiers.
C. Ndayirinde, Y. Gorbanev, R.-G. Ciocarlan, R. De Meyer, A. Smets, E. Vlasov, S. Bals, P. Cool and A. Bogaerts
Catalysis Today, 419, 114156 (2023) and supporting information

698.

Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap: Effects of metal rings on the discharge behavior and performance.
J. Wang, K. Zhang, V. Meynen and A. Bogaerts
Chem. Eng. J., 465, 142953 (2023) and supporting information

697.

Power concentration determined by thermodynamic properties in complex gas mixtures: The case of plasma-based dry reforming of methane.
O. Biondo, A. Hughes, A. van de Steeg, S. Maerivoet, B. Loenders, G. van Rooij and A. Bogaerts
Plasma Sources Sc. Technol., 32, 045001 (2023)

696.

Inactivation of SARS-CoV‑2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection.
M. Sahun, A. Privat-Maldonado, A. Lin, N. De Roeck, L. Van der Heyden, M. Hillen, J. Michiels, G. Steenackers, E. Smits, K.K. Ariën, P.G. Jorens, P. Delputte, and A. Bogaerts
ACS Sustainable Chem. Eng., 11, 5206-5215 (2023)

695.


3D porous catalysts for plasma-catalytic dry reforming of methane: How does the pore size affect the plasma-catalytic performance.
J. Wang, K. Zhang, A. Bogaerts and V. Meynen
​Chem. Eng. J., 463, 142574 (2023) and supporting information

694.

NH3 and HNOx formation and loss in nitrogen fixation from air with water vapor by nonequilibrium plasma.
E. Vervloessem, M. Gromov, N. De Geyter, A, Bogaerts, Y. Gorbanev and A. Nikiforov
ACS Sustainable Chem. Eng., 11, 4289 (2023) and supporting information

693.

Hybrid plasma-thermal system for methane conversion to ethylene and hydrogen.
R. Liu, Y. Hao, T. Wang, L. Wang, A. Bogaerts, H. Guo and Y. Yi
Chem. Eng. J., 463 142442 (2023) and supporting information

692.

Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas.
S. Van Alphen, A. Hecimovic, C.K. Kiefer, U. Fantz, R. Snyders and A. Bogaerts
Chem. Eng. J., 462, 142217 (2023) and supporting information

691.

​Methane coupling in nanosecond pulsed plasmas: Correlation between temperature and pressure and effects on product selectivity.
E. Morais, E. Delikonstantis, M. Scapinello, G. Smith, G.D. Stefanidis and A. Bogaerts
Chem. Eng. J., 462, 142227 (2023) and supporting information​​

690.​​​

Bioactive nonthermal biocompatible plasma enhances migration on human gingival fibroblasts.
I. Han, I.-S. Song, S.A. Choi, T. Lee, M. Yusupov, P. Shaw, A. Bogaerts, E.H. Choi and J. J. Ryu
Adv. Healthcare Mater., 12, 2200527 (2023) and supporting information

689.​​​

Postplasma catalytic model for NO production: Revealing the underlying mechanisms to improve the process efficiency.
H.A. Eshtehardi, K. Van ‘t Veer, M.-P. Delplancke, F. Reniers and A. Bogaerts
ACS Sustainable Chem. Eng., 11, 5 (2023) and supporting information​

688.​​​

Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma.
A. Lin, M. Sahun, E. Biscop, H. Verswyvel, J. De Waele, J. De Backer, C. Theys, B. Cuypers, K. Laukens, W. Vanden Berghe, E. Smits and A. Bogaerts
Drug Resist. Upd., 67, 100914 (2023) and supporting information

687.

Nitrogen fixation by an arc plasma at elevated pressure to increase the energy efficiency and production rate of NOx.
I. Tsonev, C. O’Modhrain, A. Bogaerts and Y. Gorbanev
ACS Sustainable Chem. Eng., 11, 1888−1897 (2023) and supporting information

686.​​

Molecular understanding of the possible mechanisms of oligosaccharide oxidation by cold plasma.
M. Yusupov, U. Khalilov, D. Dewaele, P. Attri, F. Sobott and A. Bogaerts
​​​Plasma Process. Polym., 20, e2200137 (2023)

685.

Current state of cold atmospheric plasma and cancer immunity cycle: Therapeutic relevance and overcoming clinical limitations using hydrogels.
M. Živanic, A. Espona-Noguera, A. Lin and C. Canal
Adv. Sci., 2023, 2205803 (2023)

684.

Ammonia decomposition in a dielectric barrier discharge plasma: Insights from experiments and kinetic modeling.
J.A. Andersen, K. van’t Veer, J.M. Christensen, M. Østberg, A. Bogaerts and A.D. Jensen
Chem. Eng. Sci., 271, 118550 (2023) and supporting information

683.

Post-plasma quenching to improve conversion and energy efficiency in a CO2 microwave plasma.
E.R. Mercer, S. Van Alphen, C.F.A.M. van Deursen, T.W.H. Righart, W.A. Bongers, R. Snyders, A. Bogaerts, M.C.M. Van de Sanden and F.J.J. Peeters
Fuel, 334, 126734 (2023) and supporting information​

682.

Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor: A combined experimental study and kinetic modeling.
J.A. Andersen, M.C. Holm, K. van ’t Veer, J.M. Christensen, M. Østberg, A. Bogaerts and A.D. Jensen
Chem. Eng. J., 457, 141294 (2023) and supporting information

681.

The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces: A DFT study.
Z. Cui, Y. Hao, A. Jafarzadeh, S. Li, A. Bogaerts and L. Li
Surf. Interf., 36, 102602 (2023) and supporting information

680.

​Atomic oxygen assisted CO2 conversion: A theoretical analysis.
C. Verheyen, K. van ’t Veer, R. Snyders and A. Bogaerts
J. CO2 Util., 67, 102347 (2023)

679.

Gliding arc/glow discharge for CO2 conversion: Comparing the performance of different discharge configurations.
V. Ivanov, Ts. Paunska, S. Lazarova, A. Bogaerts and St. Kolev
J. CO2 Util., 67, 102300 (2023)​​

2022

678.

Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell.
J. Van Turnhout, D. Aceto, A. Travert, P. Bazin, F. Thibault-Starzyk, A. Bogaerts and F. Azzolina-Jury
Catal. Sci. Technol., 12, 6676 (2022) and its supporting information

677.

Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma.

S. Kelly, C. Verheyen, A. Cowley and A. Bogaerts
Chem, 8, 2797–2816, (2022) and its supporting information

676.

The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions.
J. Tennyson, S. Mohr, M. Hanicinec, A. Dzarasova, C. Smith, S. Waddington, B. Liu, L.L.  Alves, K. Bartschat, A. Bogaerts, S.U. Engelmann, T. Gans, A.R. Gibson, S. Hamaguchi, K.R. Hamilton, C. Hill, D. O’Conne, S. Rauf, K. van ’t Veer and O. Zatsarinny
Plasma Sources Sci. Technol., 31, 9 (2022)

675.

Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor.
J.A. Andersen, J.M. Christensen, M. Ostberg, A. Bogaerts and A.D. Jensen
Int. J. Hydr. Energy, 47, 32081-32091 (2022) and supporting information​​​

674.

SF6 catalytic degradation in a γ‐Al2O3 packed bed plasma system: A combined experimental and theoretical study.
Z. Cui, C. Zhou, A. Jafarzadeh, S. Meng, Y. Yi, Y. Wang, X. Zhang, Y. Hao, L. Li and A. Bogaerts
High Voltage7, 1048–1058 (2022) and its supporting information

673.

Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: Insights into the reaction mechanism.
Z. Cui, S. Meng, Y. Yi, A. Jafarzadeh, S. Li, E.C. Neyts, Y. Hao, L. Li, X. Zhang, X. Wang and A. Bogaerts
ACS Catalysis12, 1326−1337 (2022) and its supporting information

672.

Grand challenges in low temperature plasmas.
X.-P. Lu, P. J. Bruggemann, S. Reuter, G. Naidis, A. Bogaerts, M. Laroussi, M. Keidar, E. Robert, J.-M. Pouvesle, D.-W. Liu and K. Ostrikov
Front. Physics, 10, 1040658 (2022)

671.

​The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies.
M.C. Oliveira, H. Verswyvel, E. Smits, R.M. Cordeiro, A. Bogaerts and A. Lin
Redox Biology, 57, 102503 (2022)

670.

Enhancing CO2 conversion with plasma reactors in series and O2 removal.
R. Vertongen, G. Trenchev, R. Van Loenhout and A. Bogaerts
J. CO2 Util., 66, 102252 (2022) and its supporting information

669.

Possible synergies of nanomaterial-assisted tissue regeneration in plasma medicine: Mechanisms and safety concerns.
​P. Shaw, P. Vanraes, N. Kumar and A. Bogaerts
Nanomaterials12, 3397 (2022)

668.

Insights into the limitations to vibrational excitation of CO2: Validation of a kinetic model with pulsed glow discharge experiments.
​O. Biondo, C. Fromentin, T. Silva, V. Guerra, G. van Rooij and A. Bogaerts
Plasma Sources Sci. Technol., 31, 074003 (2022)

667.

Sustainability analysis of methane-to-hydrogen-to-ammonia conversion by integration of high-temperature plasma and non-thermal plasma processes.
J. Osorio-Tejada, K. van’t Veer, N. Van Duc Long, N.N. Tran, L. Fulcheri, B. S. Patil, A. Bogaerts and V. Hessel
Energy Conv. Manag., 269, (2022) 116095 and its supporting information​

666.

Cytoglobin silencing promotes melanoma malignancy but sensitizes for ferroptosis and pyroptosis therapy response.
J. De Backer, D. Maric, K Zuhra, A. Bogaerts, C. Szabo, W. Vanden Berghe and D. Hoogewijs
Antioxidants, 11, 1548 (2022) and its supporting information

665.

Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the NRF2-mediated antioxidant response.
J. De Backer, A. Lin, W. Vanden Berghe, A. Bogaerts and D. Hoogewijs
Redox Biology, 55, 102399 (2022)

664.

Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions.
Y. Wang, Y. Chen, J. Harding, H. He, A. Bogaerts and X. Tu
Chem. Eng. J., 450, 137860 (2022) and its supporting information.​

663.

The 2022 Plasma Roadmap: Low temperature plasma science and technology.
I. Adamovich, S. Agarwal, E. Ahedo, L.L. Alves, S. Baalrud, N. Babaeva, A. Bogaerts, A. Bourdon, P.J. Bruggeman, C. Canal, E.H. Choi, S. Coulombe, Z. Donkó, D.B. Graves, S. Hamaguchi, D. Hegemann, M. Hori, H.-H. Kim, G.M.W. Kroesen, M.J. Kushner, A. Laricchiuta, X. Li, T.E. Magin, S. Mededovic Thagard, V. Miller, A.B. Murphy, G.S. Oehrlein, N. Puac, R.M. Sankaran, S. Samukawa, M. Shiratani, M. Šimek, N. Tarasenko, K. Terashima, E. Thomas Jr., J. Trieschmann, S. Tsikata, M.M. Turner, I.J. van der Walt, M.C.M. van de Sanden and T. von Woedtke
J. Phys. D: Appl. Phys., 55, 373001 (2022)

662.

Feature papers to celebrate “Environmental Catalysis” - Trends & outlook.
J.-F. Lamonier and A. Bogaerts
Catalysts, 12, 720 (2022)

661.

Foundations of plasma catalysis for environmental applications.
A. Bogaerts, E.C. Neyts, O. Guaitella and A.B. Murphy
Plasma Sources Sci. Technol., 31, 053002 (2022)

660.

Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling.
L. Zhang, S. Heijkers, W. Wang, L.M. Martini, P. Tosi, D. Yang, Z. Fang and A. Bogaerts
Plasma Sources Sci. Technol., 31, 055014 (2022)

659.

Plasma and plasma catalysis for sustainable chemistry.
A. Bogaerts
The Plasma Connection, March 2022

658.

Editorial: Special issue on CO2 utilization with plasma technology.
S. Li, C. Liu, A. Bogaerts and F. Gallucci
J. CO2 Util., 61, 102017 (2022)

657.

Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor.
S. Van Alphen, H. Ahmadi Eshtehardi, C. O’Modhrain, J. Bogaerts, H. Van Poyer, J. Creel, M.-P. Delplancke, R. Snyders and A. Bogaerts
Chem. Eng. J., 443, 136529 (2022) and its supporting information

656.

The effect of local non-thermal plasma therapy on the cancerimmunity cycle in a melanoma mouse model.
A. Lin, J. De Backer, D. Quatannens, B. Cuypers, H. Verswyvel, E. Cardenas De La Hoz, B. Ribbens, V. Siozopoulou, J. Van Audenaerde, E. Marcq, F. Lardon, K. Laukens, S. Vanlanduit, E. Smits and A. Bogaerts
Bioeng. Translat. Med.2022, e10314 (2022) and its supporting information.​

655.

Energy-efficient small-scale ammonia synthesis process with plasma-enabled nitrogen oxidation and catalytic reduction of adsorbed NOx.
L. Hollevoet, E. Vervloessem, Y. Gorbanev, A. Nikiforov, N. De Geyter, A. Bogaerts and J.A. Martens
ChemSusChem, 2022, e202102526 (2022) and its supporting information

654.

Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream.
F. Girard-Sahun, O. Biondo, G. Trenchev, G. van Rooij and A. Bogaerts
Chem. Eng. J., 442, 136268 (2022) and its supporting information

653.

Modulating the antioxidant response for better oxidative stress-inducing therapies: How to take advantage of two sides of the same medal?
P. Shaw, N. Kumar, M. Sahun, E. Smits, A. Bogaerts and A. Privat-Maldonado
Biomedicines10, 823 (2022)

652.

Effect of cysteine oxidation in SARS-CoV‑2 receptor-binding domain on its interaction with two cell receptors: Insights from atomistic simulations.
M. Ghasemitarei, A. Privat-Maldonado, M. Yusupov, S. Rahnama, A. Bogaerts and M. Reza Ejtehadi
J. Chem. Inf. Model.
62, 129-141 (2022)
 and its supporting information

651.

Cold atmospheric plasma does not affect stellate cells phenotype in pancreatic cancer tissue in ovo.
A. Privat-Maldonado, R. Verloy, E. Cardenas Delahoz, A. Lin, S. Vanlanduit, E. Smits and A. Bogaerts
Int. J. Mol. Sci.23, 1954 ( 2022)

650.

Sustainable NOx production from air in pulsed plasma: Elucidating the chemistry behind the low energy consumption.
E. Vervloessem, Y. Gorbanev, A. Nikiforov, N. De Geyter and A. Bogaerts
Green Chem., 24, 916-929 (2022) and its supporting information

649.

Low-temperature plasma for biology, hygiene, and medicine: Perspective and roadmap.
M. Laroussi, S. Bekeschus, M. Keidar,  A. Bogaerts, A. Fridman, X. Lu, K. Ostrikov, M. Hori, K. Stapelmann, V. Miller, S. Reuter, C. Laux, A. Mesbah, J. Walsh, C. Jiang, S. M. Thagard, H. Tanaka , D. Liu, D. Yan and M. Yusupov
IEEE Trans. Rad. Plasma Med. Sci.6, 127-157 (2022)

648.

Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study.
M.C. Oliveira, M. Yusupov, A. Bogaerts and R. M. Cordeiro​
Arch. Biochem. Biophys.717, 109136 (2022) and its supporting information.

647.

Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance.
B. Wanten, S. Maerivoet, C. Vantomme, J. Slaets, G. Trenchev and A. Bogaerts​
J. CO2 Util.,56, 101869 (2022) and its supporting information.

646.

Oxygenate production from plasma-activated reaction of CO2 and ethane.
A.N. Biswas, L.R. Winter, B. Loenders, Z. Xie, A. Bogaerts and J.G. Chen
ACS Energy Lett.7, 236-241 (2022) and its supporting information.

645.

Toward defining plasma treatment dose: The role of plasma treatment energy of pulsed-dielectric barrier discharge in dictating in vitro biological responses.
A. Lin, E. Biscop, Y. Gorbanev, E. Smits and A. Bogaerts
Plasma Process. Polym., 19, e2100151 (2022) and its supporting information

2021

644.

Plasma medicine technologies
N.K. Kaushik, S. Bekeschus, H. Tanaka, A. Lin and E.H. Choi
Appl. Sci., 11, 4584 (2021)

643.

Nitrogen fixation in an electrode-free microwave plasma.
S. Kelly and A. Bogaerts
Joule, 5, 3006-3030 (2021) and its supporting information.

642.

Plasma–liquid interactions.
P.J. Bruggeman, A. Bogaerts, J.M. Pouvesle, E.Robert and E.J. Szili
J. Appl. Phys., 130, 200401 (2021)

641.

Auranofin and cold atmospheric plasma synergize to trigger distinct cell death mechanisms and immunogenic responses in glioblastoma.
J. Van Loenhout, L. Freire Boullosa, D. Quatannens, J. De Waele, C. Merlin, H. Lambrechts, H.W. Lau, C. Hermans, A. Lin, F. Lardon, M. Peeters, A. Bogaerts, E. Smits and C. Deben
Cells, 10, 2936 (2021)

640.

Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: Can this major component in industrial emissions improve the energy efficiency?
S. Van Alphen, J. Slaets, S. Ceulemans, M. Aghaei, R. Snyders and A. Bogaerts
J. CO2 Util.54, 101767 (2021)

639.

Al2O3-supported transition metals for plasma-catalytic NH3 synthesis in a DBD plasma: Metal activity and insights into mechanisms.
Y. Gorbanev, Y. Engelmann, K. van’t Veer, E. Vlasov, C. Ndayirinde, Y. Yi, S. Bals and A. Bogaerts
Catalysts, 11, 1230 (2021) and its supporting information.

638.

Multiscale modeling of plasma–surface interaction - General picture and a case study of Si and SiO2 etching by fluorocarbon-based plasmas.
P. Vanraes, S.P. Venugopalan and A. Bogaerts
Appl. Phys. Rev., 8, 041305 (2021) (article selected by the editors as Featured Article, as one of the journal's best articles)
Copyright (2021) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://aip.scitation.org/doi/10.1063/5.0058904

637.

Plasma catalysis for ammonia synthesis: A microkinetic modeling study on the contributions of Eley−Rideal reactions.
Y. Engelmann, K. van ’t Veer, Y. Gorbanev, E.C. Neyts, W. F. Schneider and A. Bogaerts
ACS Sustainable Chem. Eng., 9, 13151−13163 (2021) and its supporting information.

636.

​Advances in non-equilibrium CO2 plasma kinetics: A theoretical and experimental review.
L.D. Pietanza, O. Guaitella, V. Aquilanti, I. Armenise, A. Bogaerts, M. Capitelli, G. Colonna, V. Guerra, R. Engeln, E. Kustova, A. Lombardi, F. Palazzetti and T. Silva
Eur. Phys. J. D, 75, 237 (2021)

635.

Quantifying the impact of vibrational nonequilibrium in plasma catalysis: Insights from a molecular dynamics model of dissociative chemisorption.
K.M. Bal and E.C. Neyts
J. Phys. D: Appl. Phys., 54, 394004 (2021) (also appeared in the special issue: emerging leaders)

634.

Unraveling the permeation of reactive species across nitrated membranes by computer simulations.
M.C. Oliveira, M. Yusupov, R.M. Cordeiro and A. Bogaerts
Comp. Biol. Med., 136, 104768 (2021) and its supporting information.

633.

Lipid oxidation: Role of membrane phase-separated domains.
M.C. Oliveira, M. Yusupov, A. Bogaerts and R.M. Cordeiro
J. Chem. Inf. Model., 61, 2857−2868 (2021) and its supporting information.

632.

Evaluation of non‑thermal effect of microwave radiation and its mode of action in bacterial cell inactivation.
P. Shaw, N. Kumar, S. Mumtaz, J.S. Lim, J.H. Jang, D. Kim, B.D. Sahu, A. Bogaerts and E.H. Choi
Scientif. Rep., 11, 14003 (2021)

631.

​Nitrogen fixation in pulsed microwave discharge studied by infrared absorption combined with modelling.
O.S. Bahnamiri, C. Verheyen, R. Snyders, A. Bogaerts and N. Britun 
Plasma Sources Sci. Technol., 30, 065007 (2021)

630.

The essential role of the plasma sheath in plasma–liquid interaction and its applications — A perspective.
P. Vanraes and A. Bogaerts
J. Appl. Phys. 129, 220901 (2021) (Editor's Pick)

629.

Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells.
P. Attri, N.K. Kaushik, N. Kaushik, D. Hammerschmid, A. Privat-Maldonado, J. De Backer, M. Shiratani, E.H. Choi and A. Bogaerts
Int. J. Biol Macrom., 182, 1724–1736 (2021) and its supporting information.

628.

Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling.
Y. Yi, S. Li, Z. Cui, Y. Hao, Y. Zhang, L. Wang, P. Liu, X. Tu, X. Xu, H. Guo and A. Bogaerts
Appl. Cat. B: Environ., 296, 120384 (2021) and its supporting information.

627.

From the Birkeland–Eyde process towards energy-efficient plasma-based NOX synthesis: a techno-economic analysis.
K.H.R. Rouwenhorst, F. Jardali, A. Bogaerts and L. Lefferts
Energy Environ. Sci., 14, 2520 (2021)  Correction published in 2023: Energy Environ. Sci., 16, 6170 (2023)

626.

Flowing atmospheric pressure afterglow for ambient ionization: Reaction pathways revealed by modeling.
M. Aghaei and A. Bogaerts
Anal. Chem., 93, 6620-6628 (2021) and its supporting information.

625.

Thermal instability and volume contraction in a pulsed microwave N2 plasma at sub-atmospheric pressure.
S. Kelly, A. van de Steeg, A. Hughes, G. van Rooij and A. Bogaerts
Plasma Sources Sci. Technol., 30, 055005 (2021)

624.

The quest to quantify selective and synergistic effects of plasma for cancer treatment: Insights from mathematical modeling.
C. Bengtson and A. Bogaerts
Int. J. Mol. Sci., 22, 5033 (2021)

623.

Methane to methanol through heterogeneous catalysis and plasma catalysis.
S. Li, R. Ahmed, Y. Yi and A. Bogaerts
Catalysts, 11, 590 (2021)

622.

Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy.
M. Yusupov, A. Privat-Maldonado, R.M. Cordeiro, H. Verswyvel, P. Shaw, J. Razzokov, E. Smits and A. Bogaerts
Redox Biology, 43, 101968 (2021)

621.

Cocktail of reactive species generated by cold atmospheric plasma: Oral administration induces non-small cell lung cancer cell death.
C.-H. Song, P. Attri, S.-K. Ku, I. Han, A. Bogaerts and E.H. Choi
J. Phys. D: Appl. Phys., 54, 185202 (2021)

620.

Cold atmospheric plasma increases temozolomide sensitivity of three-dimensional glioblastoma spheroids via oxidative stress-mediated DNA damage.
P. Shaw, N. Kumar, A. Privat-Maldonado, E. Smits and A. Bogaerts
Cancers, 13, 1780 (2021)

619.

Sustainable gas conversion by gliding arc plasmas: A new modelling approach for reactor design improvement.
S. Van Alphen, F. Jardali, J. Creel, G. Trenchev, R. Snyders and A. Bogaerts
Sustainable. Energy Fuels, 5, 1786 (2021)

618.

Covalent cysteine targeting of Bruton's tyrosine kinase (BTK) family by Withaferin-A reduces survival of glucocortoid-resistant multiple myeloma MM1 cells.
E. Logie, C.S. Chirumamilla, C. Perez‐Novo, P. Shaw, K. Declerck, A. Palagani, S. Rangarajan, B. Cuypers, N. De Neuter, F. Mobashar Hussain Urf Turabe, N. Kumar Verma, A. Bogaerts, K. Laukens, F. Offner, P. Van Vlierberghe, X. Van Ostade and W. Vanden Berghe
Cancers, 13, 1618 (2021)

617.

Plasma propagation in a single bead DBD reactor at different dielectric constants: Insights from fluid modelling.
W. Wang, T. Butterworth and A. Bogaerts
​J. Phys. D: Appl. Phys., 54, 214004 (2021)​​

616.

Probing the impact of material properties of core-shell SiO2@TiO2 spheres on the plasma-catalytic CO2 dissociation using a packed bed DBD plasma reactor.
P. Kaliyappan, A. Paulus, J. D’Haen, P. Samyn, Y. Uytdenhouwen, N. Hafezkhiabani, A. Bogaerts, V. Meynen, K. Elen, A. Hardy and M.K. Van Bael
J. CO2 Util., 46, 101468 (2021) and its supplementary information

615.

Positive and negative streamer propagation in volume dielectric barrier discharges with planar and porous electrodes.
Q. Zhang, L. Zhang, D. Yang, J. Schulze, Y. Wang and A. Bogaerts
Plasma Process. Polym., 18, e2000234 (2021) (Selected for the cover of the journal)

614.

Reaction mechanisms of C(3PJ) and C+(2PJ) with benzene in the interstellar medium from quantum mechanical molecular dynamics simulations.
M.E. Izadi, K.M. Bal, A. Maghari and E.C. Neyts
Phys. Chem. Chem. Phys., 23, 4205-4216 (2021) and its supporting information

613.

Physical plasma-derived oxidants sensitize pancreatic cancer cells to ferroptotic cell death.
N. Kumar, C. Perez-Novo, P. Shaw, E. Logie, A. Privat-Maldonado, S. Dewilde, E. Smits, W. Vanden Berghe and A. Bogaerts
Free Rad. Bio. Med., 166, 187-200 (2021)

612.

Laser-induced excitation mechanisms and phase transitions in spectrochemical analysis – Review of the fundamentals.
P. Vanraes and A. Bogaerts
Spectrochim. Acta Part B, 179, 106091 (2021)

611.

Oxidation of innate immune checkpoint CD47 on cancer cells with non-thermal plasma.
A. Lin, J. Razzokov, H. Verswyvel, A. Privat-Maldonado, J. De Backer, M. Yusupov, E. Cardenas De La Hoz, P. Ponsaerts, E. Smits and A. Bogaerts
Cancers, 13, 579 (2021)

610.

Effect of chemical modification on electronic transport properties of carbyne.
G.R. Berdiyorov, U. Khalilov, H. Hamoudi and E.C. Neyts
J. Comput. Electron., 20, 848-854, (2021)

609.

NOx production in a rotating gliding arc plasma: Potential avenue for sustainable nitrogen fixation.
F. Jardali, S. Van Alphen, J. Creel, H.A. Eshtehardi, M. Axelsson, R. Ingels, R. Snyders and A. Bogaerts
Green Chem., 23,1748 (2021) and its supporting information

608.

Plasma-catalytic ammonia reforming of methane over Cu-based catalysts for the production of HCN and H2 at reduced temperature.
Y. Yi, X. Wang, A. Jafarzadeh, L. Wang, P. Liu, B. He, J. Yan, R. Zhang, H. Zhang, X. Liu, H. Guo, E.C. Neyts and A. Bogaerts
ACS Catalysis, 11, 1765-1773 (2021) and its supporting information

607.

Spatially and temporally non-uniform plasmas: Microdischarges from the perspective of molecules in a packed bed plasma reactor.
K. van ‘t Veer, S. van Alphen, A. Remy, Y. Gorbanev, N. De Geyter, R. Snyders, F. Reniers and A Bogaerts
J. Phys. D: Appl. Phys., 54, 174002 (2021)

606.

Plasma-catalytic partial oxidation of methane on Pt(111): A microkinetic study on the role of different plasma species.
B. Loenders, Y. Engelmann and A. Bogaerts
J. Phys. Chem. C, 125, 2966-2983 (2021) and its supporting information

605.

Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers.
D. Marinov, J.-F. de Marneffe, Q. Smets, G. Arutchelvan, K.M. Bal, E. Voronina, T. Rakhimova, Y. Mankelevich, S. El Kazzi, A.N. Mehta, P.-J. Wyndaele, M.H. Heyne, J. Zhang, P.C. With, S. Banerjee, E.C. Neyts, I. Asselberghs, D. Lin and S. De Gendt
npj 2D Mat. and App., 5, 17 (2021) and its supporting information

604.

On the kinetics and equilibria of plasma-based dry reforming of methane.
Y. Uytdenhouwen, K.M. Bal, E.C. Neyts, V. Meynen, P. Cool and A. Bogaerts
Chem. Eng. J., 405 126630 (2021)

603.

How gas flow design can influence the performance of a DBD plasma reactor for dry reforming of methane.
Y. Uytdenhouwen, J. Hereijgers, T. Breugelmans, P. Cool and A. Bogaerts
Chem. Eng. J., 405, 126618 (2021)

602.

Mechanisms of selective nanocarbon synthesis inside carbon nanotubes.
U. Khalilov and E.C. Neyts
Carbon, 171, 72-78 (2021)

601.

Entropic and enthalpic factors determining the thermodynamics and kinetics of carbon segregation from transition metal nanoparticles.
S. Fukuhara, K.M. Bal, E.C. Neyts and Y. Shibuta
Carbon, 171, 806-813 (2021)

2020

600.

Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction.
L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts and J.A. Martens
Angew. Chem. Int. Ed.
, 59, 23825-23829 (2020)
(Hot paper, with publicity in ChemistryViews)

599.

Critical evaluation of the interaction of reactive oxygen and nitrogen species with blood to inform the clinical translation of nonthermal plasma therapy.
A. Lin, E. Biscop, C. Breen, S.J. Butler, E. Smits and A. Bogaerts
Ox. Med. Cell. Long., 2020, 9750206 (2020)

598.

Plasma catalysis for CO2 hydrogenation: Unlocking new pathways toward CH3OH.
R. Michiels, Y. Engelmann and A. Bogaerts
J. Phys. Chem. C, 124, 25859−25872 (2020) and its supporting information

597.

Physical plasma-treated skin cancer cells amplify tumor cytotoxicity of human natural killer (NK) cells.
R. Clemen, P. Heirman, A. Lin, A. Bogaerts and S. Bekeschus
Cancers, 12, 3575 (2020)

596.

Oxidative stress-inducing anticancer therapies: Taking a closer look at their immunomodulating effects.
J. Van Loenhout, M. Peeters, A. Bogaerts, E. Smits and C. Deben
Antioxidants, 9, 1188 (2020)

595.

How do nitrated lipids affect the properties of phospholipid membranes?
M.C. Oliveira, M. Yusupov, A. Bogaerts and R.M. Cordeiro
Arch. Biochem. Biophys., 695, 108548s (2020)

594.

​Effect of plasma-induced oxidative stress on the glycolysis pathway of Escherichia coli.
S. Ranjbar, M. Shahmansouri, P. Attri and A. Bogaerts
​Comp. Biol. Med., 127, 104064 (2020)​

593.

Advances in plasma oncology toward clinical translation.​
A. Lin, K. Stapelmann and A. Bogaerts
Cancers, 12, 3283 (2020)​

592.

The effect of H2O on the vibrational populations of CO2 in a CO2/H2O microwave plasma: a kinetic modelling investigation.​
C. Verheyen, T. Silva, V. Guerra and A. Bogaerts
​Plasma Sources Sci. Technol., 29, 095009 (2020)​

591.

Arc plasma reactor modification for enhancing performance of dry reforming of methane.​
D.K. Dinh, G. Trenchev, D.H. Lee and A. Bogaerts
J. CO2 Util., 42, 101352 (2020)​​

590.

Plasma-driven catalysis: green ammonia synthesis with intermittent electricity.
K.H.R. Rouwenhorst, Y. Engelmann, K. van ‘t Veer, R.S. Postma, A. Bogaerts and L. Lefferts
Green Chem., 22, 6258 (2020)

589.

On the anti-cancer effect of cold atmospheric plasma and the possible role of catalase-dependent apoptotic pathways.
C. Bengtson and A. Bogaerts
Cells9, 2330 (2020)

588.

Plasma-catalytic ammonia synthesis in a DBD plasma: Role of microdischarges and their afterglows.
K. van ‘t Veer, Y. Engelmann, F. Reniers and A. Bogaerts
J. Phys. Chem. C, 124, 22871−22883 (2020) and its supporting information

587.

Risk evaluation of EMT and inflammation in metastatic pancreatic cancer cells following plasma treatment.
E. Freund, C. Spadola, A. Schmidt, A. Privat-Maldonado, A. Bogaerts, T. von Woedtke, K.-D. Weltmann, C.-D. Heidecke, L.-I. Partecke, A. Käding and S. Bekeschus
Front. Phys., 8, 569618 (2020)

586.

Free energy barriers from biased molecular dynamics simulations.
K.M. Bal, S. Fukuhara, Y. Shibuta and E.C. Neyts
J. Chem. Phys., 153, 114118 (2020)
Copyright (2020) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Reviews and may be found at: https://aip.scitation.org/doi/full/10.1063/5.0020240

585.

Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study.
P. Attri, J.-H. Park, J. De Backer, M. Kim, J.-H. Yun, Y. Heo, S. Dewilde, M. Shiratani, E.H. Choi, W. Lee and A. Bogaerts
Int. J. Biol. Macromol.,163, 2405–2414 (2020)

584.

Cold atmospheric plasma treatment for pancreatic cancer - The importance of pancreatic stellate cells.
R. Verloy, A. Privat-Maldonado, E. Smits and A. Bogaerts
Cancers, 12, 2782 (2020)

583.

Plasma in cancer treatment.
A. Privat-Maldonado and A. Bogaerts
Cancers, 12, 2617 (2020)

582.

Modeling plasmas in analytical chemistry - An example of cross-fertilization.
A. Bogaerts
Anal. Bioanal. Chem., 412, 6059-6083 (2020) (Invited feature article in the topical collection featuring “Female Role Models in Analytical Chemistry”)

581.

Plasma-based CO2 conversion: To quench or not to quench?
V. Vermeiren and A. Bogaerts
J. Phys. Chem. C, 124, 18401-18415 (2020)

580.

The 2020 plasma catalysis roadmap.
A. Bogaerts, X. Tu, J.C. Whitehead, G. Centi, L. Lefferts, O. Guaitella, F. Azzolina-Jury, H. Kim, A.B. Murphy, W.F. Schneider, T. Nozaki, J.C. Hicks, A. Rousseau, F. Thevenet, A. Khacef and M. Carreon
J. Phys. D: Appl. Phys., 53, 443001 (2020)

579.

H2S decomposition into H2 and S2 by plasma technology: Comparison of gliding arc and microwave plasma.
Q. Zhang, W. Wang, C. Thille and A. Bogaerts
Plasma Chem. Plasma Process., 40, 1163-1187 (2020)

578.

Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor.
J.A. Andersen, J.M. Christensen, M. Østberg, A. Bogaerts and A.D. Jensen
Chem. Eng. J., 397, 125519 (2020)

577.

Plasma-catalytic ammonia synthesis beyond the equilibrium limit.
P. Mehta, P.M. Barboun, Y. Engelmann, D.B. Go, A. Bogaerts, W.F. Schneider and J.C. Hicks
ACS Catalysis, 10, 6726-6734 (2020)

576.

Predicted hotspot residues involved in allosteric signal transmission in pro-apoptotic peptide—Mcl1 complexes.
P. Marimuthu, J. Razzokov, K. Singaravelu and A. Bogaerts
Biomolecules, 10, 1114 (2020)

575.

Plasma-based N2 fixation into NOx: Insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron.
E. Vervloessem, M. Aghaei, F. Jardali, N. Hafezkhiabani and A. Bogaerts
ACS Sustainable Chem. Eng., 8, 9711-9720 (2020) and its supporting information

574.

Plasma technology for CO2 conversion: A personal perspective on prospects and gaps.
A. Bogaerts and G. Centi
Front. Energy Res., 8, 111 (2020)

573.

The penetration of reactive oxygen and nitrogen species across the stratum corneum.
J. Duan, M. Ma, M. Yusupov, R.M. Cordeiro, X. Lu and A. Bogaerts
Plasma Process. Polym., 17, e2000005 (2020) (Selected for the cover of the journal)

572.

Predicted influence of plasma activation on nonoxidative coupling of methane on transition metal catalysts.
Y. Engelmann, P. Mehta, E.C. Neyts, W.F. Schneider and A. Bogaerts
ACS Sustainable Chem. Eng., 8, 6043−6054 (2020) and its supporting information

571.

Disruption of conserved polar interactions causes a sequential release of Bim mutants from the canonical binding groove of Mcl.
P. Marimuthu, J. Razzokov and G. Eshonqulov
Int. J. Biol. Macromol., 158, 367-374 (2020)

570.

The potential use of core-shell structured spheres in a packed-bed DBD plasma reactor for CO2 conversion.
Y. Uytdenhouwen, V. Meynen, P. Cool and A. Bogaerts
Catalysts, 10, 530 (2020)

569.

Activation of CO2 on copper surfaces: The synergy between electric field, surface morphology, and excess electrons.
A. Jafarzadeh, K.M. Bal, A. Bogaerts and E.C. Neyts
J. Phys. Chem. C, 124, 6747−6755 (2020) and its supporting information

568.

Multi-dimensional modelling of a magnetically stabilized gliding arc plasma in argon and CO2.
H. Zhang, H. Zhang, G. Trenchev, X. Li, Y. Wu and A. Bogaerts
Plasma Sources Sci. Technol., 29, 045019 (2020)

567.

Zero-dimensional modelling of unpacked and packed bed dielectric barrier discharges: The role of vibrational kinetics in ammonia synthesis.
K. van ‘t Veer, F. Reniers and A. Bogaerts
Plasma Sources Sci. Technol., 29, 045020 (2020)

566.

Plasma-based CH4 conversion into higher hydrocarbons and H2: Modeling to reveal the reaction mechanisms of different plasma sources.
S. Heijkers, M. Aghaei and A. Bogaerts
J. Phys. Chem. C, 124, 7016−7030 (2020)(Featured in "ACS Editors' Choice", and given open access due to its potential for broad public interest)

565.

Dual-vortex plasmatron: a novel plasma source for CO2 conversion.
G. Trenchev and A. Bogaerts
J. CO2 Util., 39, 101152 (2020)

564.

Parametrization and molecular dynamics simulations of nitrogen oxyanions and oxyacids for applications in atmospheric and biomolecular sciences.
R.M. Cordeiro, M. Yusupov, J. Razzokov and A. Bogaerts
J. Phys. Chem. B, 124, 1082−1089 (2020)

563.

CO2 and CH4 conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2 and O2 affect the performance?
J. Slaets, M. Aghaei, S. Ceulemans, S. Van Alphen and A. Bogaerts
Green Chem., 22, 1366 (2020)

562.

Chemistry reduction of complex CO2 chemical kinetics: application to a gliding arc plasma.
S.R. Sun, H.X. Wang and A Bogaerts
Plasma Sources Sci. Technol.,29, 025012 (2020)

561.

Nitrogen fixation with water vapor by nonequilibrium plasma: Towards sustainable ammonia production.
Y. Gorbanev, E. Vervloessem, A. Nikiforov and A. Bogaerts
ACS Sustainable Chem. Eng., 8, 2996-3004 (2020)

560.

Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature.
R. Zhou, R. Zhou, Y. Xian, Z. Fang, X. Lu, K. Bazaka, A. Bogaerts and K. Ostrikov
Chem. Eng. J., 382, 122745 (2020)

559.

Accelerated molecular dynamics simulation of large systems with parallel collective variable-driven hyperdynamics.
S. Fukuhara, K.M. Bal, E.C. Neyts and Y. Shibuta
Comput. Mater. Sci., 177, 109581 (2020)

558.

Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study.
P. Attri, J. Razzokov, M. Yusupov, K. Koga, M. Shiratani and A. Bogaerts
Int. J. Biol. Macromol., 148, 657–665 (2020)

557.

Power pulsing to maximize vibrational excitation efficiency in N2 microwave plasma: A combined experimental and computational study.
S. Van Alphen, V. Vermeiren, T. Butterworth, D.C.M. van den Bekerom, G.J. van Rooij and A. Bogaerts
J. Phys. Chem. C, 124, 1765−1779 (2020) (Selected for the cover of the journal)

556.

Ensemble-based molecular simulation of chemical reactions under vibrational nonequilibrium.
K.M. Bal,  A. Bogaerts and E.C. Neyts
J. Phys. Chem. Lett., 11, 401−406 (2020)

2019

555.

Plasma catalysis modeling.
A. Bogaerts and E.C. Neyts
Chapter 4 in “Plasma Catalysis: Fundamentals and Applications, X. Tu, J.C. Whitehead and T. Nozaki (Eds), Springer, Cham (2019)

554.

Modifying the tumour microenvironment: Challenges and future perspectives for anticancer plasma treatments.
A. Privat-Maldonado, C. Bengtson, J. Razzokov, E. Smits and A. Bogaerts
Cancers, 11, 1920 (2019)

553.

Cold atmospheric plasma-treated PBS eliminates immunosuppressive pancreatic stellate cells and induces immunogenic cell death of pancreatic cancer cells.
J. Van Loenhout, T. Flieswasser, L. Freire Boullosa, J. De Waele, J. Van Audenaerde, E. Marcq, J. Jacobs, A. Lin, E. Lion, H. Dewitte, M. Peeters, S. Dewilde, F. Lardon, A. Bogaerts, C. Deben and E. Smits
Cancers, 11, 1597 (2019)

552.

Molecular dynamics simulations of mechanical stress on oxidized membranes.
M.C. Oliveira, M. Yusupov, A. Bogaerts and R.M. Cordeiro
Biophys. Chem., 254, 106266 (2019)

551.

ROS from physical plasmas: Redox chemistry for biomedical therapy.
A. Privat-Maldonado, A. Schmidt, A. Lin, K.-D. Weltmann, K. Wende, A. Bogaerts and S. Bekeschus
Oxid. Med. Cell. Long.,2019, 9062098 (2019)

550.

Effect of oxidative stress on cystine transportation by xC‾ antiporter.
M. Ghasemitarei, M. Yusupov, J. Razzokov, B. Shokri and A. Bogaerts
Archives of Biochemistry and Biophysics, 674, 108114 (2019)

549.

How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage: an experimental and computational study.
J. Van der Paal, S.-H. Hong, M. Yusupov, N. Gaur, J.-S. Oh, R.D. Short, E.J. Szili and  A. Bogaerts
Phys. Chem. Chem. Phys., 21, 19327-19341 (2019)

548.

Ceramide cross-linking leads to pore formation: Potential mechanism behind CAP enhancement of transdermal drug delivery.
J. Van der Paal, G. Fridman and A. Bogaerts
Plasma Proc. Polymers, 16, e1900122 (2019)

547.

Influence of cell type and culture medium on determining cancer selectivity of cold atmospheric plasma treatment.
E. Biscop, A. Lin, W. Van Boxem, J. Van Loenhout, J. De Backer, C. Deben, S. Dewilde, E. Smits and A. Bogaerts
Cancers, 11, 1287 (2019)

546.

Risk assessment of kINPen plasma treatment of four human pancreatic cancer cell lines with respect to metastasis.
S. Bekeschus, E. Freund, C. Spadola, A. Privat-Maldonado, C. Hackbarth, A. Bogaerts, A. Schmidt, K. Wende, K. Weltmann, T. von Woedtke, C. Heidecke, L. Partecke and A. Käding
Cancers11, 1237 (2019)

545.

Burning questions of plasma catalysis: Answers by modeling.
A. Bogaerts, Q. Zhang , Y. Zhang, K. Van Laer and W. Wang
Catal. Today, 337, 3-14 (2019)

544.

Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins.
M. Vanmeert, J. Razzokov, M.U. Mirza, S.D. Weeks, G. Schepers, A. Bogaerts, J. Rozenski, M. Froeyen, P. Herdewijn, V.B. Pinheiro and E. Lescrinier
Nucleic Acids Res., 47, 7131 (2019)

543.

Improving the energy efficiency of CO2 conversion in nonequilibrium plasmas through pulsing.
V. Vermeiren and A. Bogaerts
J. Phys. Chem. C, 123, 17650−17665 (2019) and its supporting information

542.

Removal of alachlor in water by non-thermal plasma: Reactive species and pathways in batch and continuous process.
N. Wardenier, Y. Gorbanev, I. Van Moer, A. Nikiforov, S. W.H. Van Hulle, P. Surmont, F. Lynen, C. Leys, P. Vanraes and A. Bogaerts
Water Res., 161, 549-559 (2019)

541.

Applications of the COST plasma jet: More than a reference standard.
Y. Gorbanev, J. Golda, V. Schulz-von der Gathen and A. Bogaerts
Plasma, 2, 316-327 (2019)

540.

Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy.
P. Shaw, N. Kumar, D. Hammerschmid, A. Privat-Maldonado, S. Dewilde and A. Bogaerts
Cancers, 11, 1109 (2019)

539.

Perspectives of plasma-treated solutions as anticancer drugs.
P. Attri and A. Bogaerts
Anti-Cancer Agents in Medicinal Chemistry, 19, 436-438 (2019)

538.

Catalyzed growth of encapsulated carbyne.
U. Khalilov, C. Vets and E.C. Neyts
Carbon, 153, 1-5 (2019)

537.

Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study.
P. Heirman, W. Van Boxem and A. Bogaerts
Phys. Chem. Chem. Phys., 21, 12881 (2019)

536.

Oxidation destabilizes toxic amyloid beta peptide aggregation.
J. Razzokov, M. Yusupov and A. Bogaerts
Scientif. Rep., 9, 5476 (2019) and its supporting information

535.

Transport of reactive oxygen and nitrogen species across aquaporin: A molecular level picture.
M. Yusupov, J. Razzokov, R.M. Cordeiro and A. Bogaerts
Oxid. Med. Cell. Long., 2019, 2930504 (2019)

534.

Suppressing the formation of NOx and N2O in CO2/N2 dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work.
R. Snoeckx, K. Van Wesenbeeck, S. Lenaerts and A. Bogaerts
Sustainable Energy Fuels, 3, 1388-1395 (2019) (Selected for the cover of the journal)

533.

Nanosecond pulsed discharge for CO2 conversion: Kinetic modeling to elucidate the chemistry and improve the performance.
S. Heijkers, L.M. Martini, G. Dilecce, P. Tosi and A. Bogaerts
J. Phys. Chem. C, 123, 12104−12116 (2019) and its supporting information

532.

Combining CO2 conversion and N2 fixation in a gliding arc plasmatron.
M. Ramakers, S. Heijkers, T. Tytgat, S. Lenaerts and A. Bogaerts
J. CO₂ Utilization,33, 121-130 (2019) and its supporting information

531.

Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling.
A. Bogaerts, M. Yusupov, J. Razzokov and J. Van der Paal
Front. Chem. Sci. Eng., 13, 253–263 (2019)

530.

How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion.
Y. Uytdenhouwen, K.M. Bal, I. Michielsen, E.C. Neyts, V. Meynen, P. Cool and A. Bogaerts
Chem. Eng. J., 372, 1253–1264 (2019)

529.

Molecular evidence for feedstock-dependent nucleation mechanisms of CNTs.
U. Khalilov, C. Vets and E.C. Neyts
Nanoscale Horizons, 4, 674-682 (2019)

528.

CO2 activation on TiO2‑supported Cu5 and Ni5 nanoclusters: Effect of plasma-induced surface charging.
A. Jafarzadeh, K.M. Bal, A. Bogaerts and E.C. Neyts
J. Phys. Chem. C, 123, 6516-6525 (2019)

527.

Overcoming old scaling relations and establishing new correlations in catalytic surface chemistry: Combined effect of charging and doping.
K.M. Bal and E.C. Neyts
J. Phys. Chem. C, 123, 6141-6147 ( 2019)

526.

The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet.
B. Ghimire, E. J. Szili, P. Lamichhane, R. D. Short, J. S. Lim, P. Attri, K. Masur, K.-D. Weltmann, S.-H. Hong and E. H. Choi
Appl. Phys. Lett., 114, 093701 (2019)
Copyright (2018) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Reviews and may be found at: https://aip.scitation.org/doi/full/10.1063/1.5086522

525.

Non-thermal plasma as a unique delivery system of short-Lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells.
A. Lin, Y. Gorbanev, J. De Backer, J. Van Loenhout, W. Van Boxem, F. Lemière, P. Cos, S. Dewilde, E. Smits and A. Bogaerts
Adv. Sci., 2019, 1802062 (2019)

524.

Transport of cystine across xC antiporter.
M. Ghasemitarei, M. Yusupov, J. Razzokov, B. Shokri and A. Bogaerts
Archives of Biochemistry and Biophysics, 664, 117-126 (2019)

523.

Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis.
M. Liu, Y. Yi, L. Wang, H. Guo and A. Bogaerts
Catalysts, 9, 275 (2019)

522.

Editorial Catalysts: Special issue on plasma catalysis.
A. Bogaerts
Catalysts, 9, 196 ( 2019)

521.

Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material.
I. Michielsen, Y. Uytdenhouwen, A. Bogaerts and V. Meynen
Catalysts, 9, 51 (2019)

520.

Reaction of chloride anion with atomic oxygen in aqueous solutions: can cold plasma help in chemistry research?
Y. Gorbanev, J. Van der Paal, W. Van Boxem, S. Dewilde and A. Bogaerts
Phys. Chem. Chem. Phys., 21, 4117-4121 (2019) (2019 HOT Physical Chemistry Chemical Physics article)

519.

Atmospheric pressure glow discharge for CO2 conversion: Model-based exploration of the optimum reactor configuration.
G. Trenchev, A. Nikiforov, W. Wang, St. Kolev and A. Bogaerts
Chem. Eng. J., 362, 830-841 (2019)

518.

White paper on the future of plasma science in environment, for gas conversion and agriculture.
R. Brandenburg, A. Bogaerts, W. Bongers, A. Fridman, G. Fridman, B.R. Locke, V. Miller, S. Reuter, M. Schiorlin, T. Verreycken and K. Ostrikov
Plasma Process. Polymers, 16, e1700238 (2019)

517.

Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera.
S. Gröger, M. Ramakers, M. Hamme, J.A. Medrano, N. Bibinov, F. Gallucci, A. Bogaerts and P. Awakowicz
J. Phys. D: Appl. Phys., 52, 065201 (2019)

2018

516.

Modeling plasma-based CO2 and CH4 conversion in mixtuires with N2, O2 and H2O: The bigger plasma chemistry picture.
W. Wang, R. Snoecks, X. Zhang, M.S. Cha and A. Bogaerts
J. Phys. Chem. C, 122, 8704-8723 (2018) and its supporting information. (Invited feature article and selected for the cover of the journal).

515.

Plasma technology: An emerging technology for energy storage.
A. Bogaerts and E.C. Neyts
ACS Energy Lett., 3, 1013-1027 (2018)  (Invited feature article and selected to be featured in ACS Editors' Choice + Free Open Access)

514.

Streamer propagation in a packed bed plasma reactor for plasma catalysis applications.
W. Wang, H.-H. Kim, K. Van Laer and A. Bogaerts
Chem. Eng. J., 334, 2467-2479 (2018)

513.

Reduction of human glioblastoma spheroids using cold atmospheric plasma: The combined effect of short- and long-lived reactive species.
A. Privat-Maldonado, Y. Gorbanev, S. Dewilde, E. Smits and A. Bogaerts
Cancers, 10, 394 (2018)(Selected as "Editor's Choice Article" because of the high interests among readers with high citation number)

512.

Analysis of short-lived reactive species in plasma−air−water systems: The Dos and the Do Nots.
Y. Gorbanev, A. Privat-Maldonado and A. Bogaerts
Anal. Chem., 90, 13151−13158 (2018)

511.

Impact of the particle diameter on ion cloud formation from gold nanoparticles in ICPMS.
J. Fuchs, M. Aghaei, T.D. Schachel, M. Sperling, A. Bogaerts and U. Karst
Anal. Chem., 90, 10271-10278 (2018)

510.

Ammonia synthesis by radio frequency plasma catalysis: Revealing the underlying mechanisms.
J. Shah, W. Wang, A. Bogaerts and M.L. Carreon
ACS Appl. Energy Mater., 1, 4824-4839 (2018)

509.

Plasma physics of liquids - A focused review.
P. Vanraes and A. Bogaerts
Appl. Phys. Rev., 5, 031103 (2018)  (Featured article).
Copyright (2018) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Reviews and may be found at: https://aip.scitation.org/doi/10.1063/1.5020511

508.

Nanoscale insight into silk-like protein self-assembly: Effect of design and number of repeat units.
J. Razzokov, S. Naderi and P. van der Schoot
Phys. Biol., 15, 066010 (2018)  (Featured article).

507.

Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function.
D. Mannaerts, E. Faes, P. Cos, J.J. Briedé, W. Gyselaers, J. Cornette, Y. Gorbanev, A. Bogaerts, M. Spaanderman, E. Van Craenenbroeck and Y. Jacquemyn
PLOS one, 13, e0202919 (2018)

506.

Supersonic microwave plasma: Potential and limitations for energy-efficient CO2 conversion.
V. Vermeiren and A. Bogaerts
J. Phys. Chem. C, 122, 25869-25881 (2018) and its supporting information.

505.

High coke resistance of a TiO2 anatase (001) catalyst surface during dry reforming of methane.
S. Huygh, A. Bogaerts, K.M. Bal and E.C. Neyts
J. Phys. Chem. C, 122, 9389-9396 (2018)

504.

Novel power-to-syngas concept for plasma catalutic reforming coupled with water electrolysis.
K. Li, J.-L. Liu, X.-S. Li, H.-Y. Lian, X. Zhu, A. Bogaerts and A.-M. Zhu
Chem. Eng. J., 353, 297-304 (2018)

503.

A packed-bed DBD micro plasma reactor for CO2 dissociation: Does size matter?
Y. Uytdenhouwen, S. Van Alphen, I. Michielsen, V. Meynen, P. Cool and A. Bogaerts
Chem. Eng. J., 348, 557-568 (2018)

502.

Plasma-based multi-reforming for gas-to-liquid: Tuning the plasma chemistry towards methanol.
R. Snoeckx, W. Wang, X. Zhang, M.S. Cha and A. Bogaerts
Scientif. Rep., 8, 15929 (2018)

501.

Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species.
P. Shaw, N. Kumar, H.S. Kwak, J.H. Park, H.S. Uhm, A. Bogaerts, E.H. Choi and P. Attri
Scientif. Rep., 8, 11268 (2018)

500.

Study of an AC dielectric barrier single micro-discharge filament over a water film.
P. Vanraes, A. Nikiforov, A. Bogaerts and C. Leys
Scientif. Rep., 8, 10919 (2018)

499.

CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation.
P. Attri, J. Han, S. Choi, E.H. Choi, A. Bogaerts and W. Lee
Scientif. Rep., 8, 10218 (2018)

498.

Chemical fingerprints of cold physical plasmas - an experimental and computational study using cysteine as tracer compound.
J.-W. Lackmann, K. Wende, C. Verlackt, J. Golda, J. Volzke, F. Kogerheide, J. Held, S. Bekeschus, A. Bogaerts, V. Schulz-von der Gathen and K. Stapelmann
Scientif. Rep., 8, 7736 (2018)

497.

Molecular insights into the interaction of RONS and thieno[3,2-c]pyran analogs with SIRT6/COX-2: a molecular dynamics study.
D.K. Yadav, S. Kumar, Saloni, S. Misra, L. Yadav, M. Teli, P. Sharma, S. Chaudhary, N. Kumar, E.H. Choi, H.S. Kim and M.h. Kim
Scientif. Rep., 8, 4777 (2018)

496.

The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: A potential tumor supprsor.
J. De Backer, J. Razzokov, D. Hammerschmid, C. Mensch, Z. Hafideddine, N. Kumar, G. van Raemdonck, M. Yusupov, S. Van Doorslaer, C. Johannessen, F. Sobott, A. Bogaerts and S. Dewilde
Redox Biol., 19, 1-10 (2018)

495.

Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux.
D.U.B. Aussems, K.M. Bal, T.W. Morgan, M.C.M. van de Sanden and E.C. Neyts
Carbon, 137, 527-532 (2018)

494.

Impact of plasma oxidation on structural features of human epidermal growth factor.
M. Yusupov, J.-W. Lackmann, J. Razzokov, S. Kumar, K. Stapelmann and A. Bogaerts
Plasma Process. Polymers, 15, e1800022 (2018)  (Paper highlighted on the news website, AdvancedScienceNews.com)

493.

Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers.
F. Rezaei, Y. Gorbanev, M. Chys, A. Nikiforov, S.W.H. Van Hulle, P. Cos, A. Bogaerts and N. De Geyter
Plasma Process. Polymers, 15, e1700226 (2018) and its supporting information (Selected for the cover of the journal, and highlighted on the news website,AdvancedScienceNews.com).

492.

Mode transition of filaments in packed-bed dielectric barrier discharges.
M. Gao, Y. Zhang, H. Wang, B. Guo, Q. Zhang and A. Bogaerts
Catalysts, 8, 248 (2018)

491.

Possible mechanism of glucose uptake enhanced by cold atmospheric plasma: atomic scale simulations.
J. Razzokov, M. Yusupov and A. Bogaerts
Plasma, 1, 119-125 (2018)

490.

The conversion mechanism of amorphous silicon to stoichiometric WS2.
M.H. Heyne, J.-F. de Marneffe, T. Nuytten, J. Meersschaut, T. Conard, M. Caymax, I. Radu, A. Delabie, E.C. Neyts and S. De Gendt
J. Mater. Chem. C, 6, 4122-4130 (2018)

489.

Pinpointing energy losses in CO2 plasmas - Effect on CO2 conversion.
A. Berthelot and A. Bogaerts
J. CO2 Utilization, 24, 479-499 (2018)

488.

Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations.
I. Belov, V. Vermeiren, S. Paulussen and A. Bogaerts
J. CO2 Utilization, 24, 386-397 (2018)

487.

Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy.
N. Kumar, P. Shaw, J. Razzokov, M. Yusupov, P. Attri, H.S. Uhm, E.H. Choi and A. Bogaerts
RSC Advances, 8, 9887-9894 (2018)

486.

Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: reaction mechanisms and oxidation by-products.
P. Vanraes, N. Wardenier, P. Surmont, F. Lynen, A. Nikiforov, S.W.H. Van Hulle, C. Leys and A. Bogaerts
J. Hazardous Mater., 354, 180-190 (2018)

485.

Atomic scale understanding of the permeation of plasma species across native and oxidized membranes.
J. Razzokov, M. Yusupov, R.M. Cordeiro and A. Bogaerts
J. Phys. D: Appl. Phys., 51, 365203 (2018)

484.

Inactivation of human pancreatic ductal adenocarcinoma with atmospheric plasma treated media and water: a comparative study.
N. Kumar, P. Attri, S. Dewilde and A. Bogaerts
J. Phys. D: Appl. Phys., 51, 255401 (2018)

483.

Modelling of plasma-based dry reforming: how do uncertainties in the input data affect the calculation results?
W. Wang, A. Berthelot, Q. Zhang and A. Bogaerts
J. Phys. D: Appl. Phys., 51, 204003 (2018)

482.

Atomic scale simulation of H2O2 permeation through aquaporin: toward the understanding of plasma cancer treatment.
M. Yusupov, D. Yan, R.M. Cordeiro and A. Bogaerts
J. Phys. D: Appl. Phys., 51, 125401 (2018)

481.

Three-dimensional modeling of energy transport in a gliding arc discharge in argon.
St. Kolev and A. Bogaerts
Plasma Sources Sci. Technol., 27, 125011 (2018)

480.

Capacitive electrical asymmetry effect in an inductively coupled plasma reactor.
Q-Z. Zhang and A. Bogaerts
Plasma Sources Sci. Technol., 27, 105019 (2018)

479.

Plasma streamer propagation in structured catalysts.
Q-Z. Zhang and A. Bogaerts
Plasma Sources Sci. Technol., 27, 105013 (2018)

478.

Importance of surface charging during plasma streamer propagation in catalyst pores.
Q.-Z. Zhang, W.-Z. Wang and A. Bogaerts
Plasma Sources Sci. Technol., 27, 065009 (2018)

477.

Enhancement of plasma generation in catalyst pores with different shapes.
Y.-R. Zhang, E.C. Neyts and A. Bogaerts
Plasma Sources Sci. Technol., 27, 055008 (2018)

476.

Propagation of a plasma streamer in catalyst pores.
Q.-Z. Zhang and A. Bogaerts
Plasma Sources Sci. Technol., 27, 035009 (2018)

475.

Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation.
K.M. Bal, S. Huygh, A. Bogaerts and E.C. Neyts
Plasma Sources Sci. Technol., 27, 024001 (2018)
(Selected by the editors of Plasma Sources Science and Technology as one of the “Highlights of 2018" in the "Papers" section)

474.

Foundations of modelling of nonequilibrium low-temperature plasmas.
L.L. Alves, A. Bogaerts, V. Guerra and M.M. Turner
Plasma Sources Sci. Technol., 27, 023002 (2018)
(Selected by the editors of Plasma Sources Science and Technology as one of the “Highlights of 2018" in the "Topical Reviews" section)

473.

Modelling molecular absorption on charged or polarized surfaces: a critical flaw in common approaches.
K.M. Bal and E.C. Neyts
Phys. Chem. Chem. Phys., 20, 8456-8459 (2018)

472.

Transport and accumulation of plasma generated species in aqueous solution.
C.C.W. Verlackt, W. Van Boxem and A. Bogaerts
Phys. Chem. Chem. Phys., 20, 6845-6859 (2018)

471.

Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet.
Y. Gorbanev, C.C.W. Verlackt, S. Tinck, E. Tuenter, K. Foubert, P. Cos and A. Bogaerts
Phys. Chem. Chem. Phys., 20, 2797-2808 (2018) and its supporting information

470.

Synthesis and in vitro investigation of halogenated 1,3-bis(4-nitrophenyl)triazenide salts as antitubercular compounds.
E. Torfs, J. Vajs, M. Bidart de Macedo, F. Cools, B. Vanhoutte, Y. Gorbanev, A. Bogaerts, L. Verschaeve, G. Caljon, L. Maes, P. Delputte, P. Cos, J. Kosmrlj and D. Cappoen
Chem. Biol. Drug Des., 91, 631-640 (2018)

469.

Modeling for a better understanding of plasma-based CO2 conversion.
A. Bogaerts, R. Snoeckx, G. Trenchev and W. Wang
Plasma Chemistry and Gas Conversion, N. Britun (Ed.), IntechOpen (2018)

2017

468.

Plasma technology - a novel solution for CO2 conversion?
R. Snoeckx and A. Bogaerts
Chem. Soc. Rev., 46, 5805-5863 (2017) (Paper featered on the back cover page of the journal)

467.

Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry.
E. Cleiren, S. Heijkers, M. Ramakers and A. Bogaerts
ChemSusChem, 10, 4025-4036 (2017) and its supporting information(Cover feature of the journal)

466.

Gliding arc plasmatron: providing an alternativemethod for carbon dioxide conversion.
M. Ramakers, G. Trenchev, S. Heijkers, W. Wang and A. Bogaerts
ChemSusChem, 10, 2642-2652 (2017) and its supporting information.

465.

Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling.
W. Wang, B. Patil, S. Heijkers, V. Hessel and A. Bogaerts
ChemSusChem, 10, 2145-2157 (2017)  and its supporting information(Paper featered on the cover page of the journal, as "cover profile" and "very important paper" of ChemSusChem)

464.

The chemical route to a carbon dioxide neutral world.
J.A. Martens, A. Bogaerts, N. De Kimpe, P.A. Jacobs, G.B. Marin, K. Rabaey, M. Saeys and S. Verhelst
ChemSusChem, 10, 1039-1055 (2017)

463.

The quest for value-added products from carbon dioxide and water in a dielectric barrier discharge: a chemical kinetics study.
R. Snoeckx, A. Ozkan, F. Reniers and A. Bogaerts
ChemSusChem, 10, 409-424 (2017) and its supporting information.

462.

Atomistic simulations of graphite etching at realistic time scales.
D.U.B. Aussems, K.M. Bal, T.W. Morgan, M.C.M. van de Sanden and E.C. Neyts
Chem. Sci., 8, 7160-7168 (2017)

461.

CO2 conversion in a gliding arc plasma: performance improvement based on chemical reaction modeling.
S.R. Sun, H.X. Wang, D.H. Mei, X. Tu and A. Bogaerts
J. CO2 Utilization, 17, 220-234 (2017)

460.

Harvesting renewable energy for CO2 catalysis.
A. Navarrete, G. Centi, A. Bogaerts, A. Martin, A. York and G. Stefanidis
Energy Technol., 5, 796-811 (2017) (Selected by the journal as “Best of 2017”)

459.

A first principles study of p-type defects in LaCrO3.
S. Dabaghmanesh, N. Sarmadian, E.C. Neyts and B. Partoens
Phys. Chem. Chem. Phys., 19, 22870-22876 (2017)

458.

A DFT study of H-dissolution into the bulk of a crystalline Ni(111) surface: a chemical identifier for the reaction kinetics.
M. Shirazi, A. Bogaerts and E.C. Neyts
Phys. Chem. Chem. Phys., 19, 19150-19158 (2017)

457.

Gliding arc plasma for CO2 conversion: better insights by a combined experimental and modelling approach.
W. Wang, D. Mei, X. Tu and A. Bogaerts
Chem. Engng. J., 330, 11-25 (2017)

456.

CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis.
I. Michielsen, Y. Uytdenhouwen, J. Pype, B. Michielsen, J. Mertens, F. Reniers, V. Meynen and A. Bogaerts
Chem. Engng. J., 326, 477-488 (2017)

455.

The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes.
S. Dabaghmanesh, M. Neek-Amal, B. Partoens and E.C. Neyts
Chem. Phys. Lett., 687, 188-193 (2017)

454.

Mechanisms for plasma cryogenic etching of porous materials.
Q.-Z. Zhang, S. Tinck, J.-F. de Marneffe, L. Zhang and A. Bogaerts
Appl. Phys. Lett., 111, 173104 (2017)
Copyright (2017) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at:http://aip.scitation.org/doi/10.1063/1.4999439

453.

Selective glucocorticoid receptor properties of GSK866 analogs with cysteine reactive warheads.
C.S. Chirumamilla, A. Palagani, B. Kamaraj, K. Declerck, M.W.C. Verbeek, R. Oksana, K. De Bosscher, N. Bougarne, B. Ruttens, K. Gevaert, R. Houtman, W.H. De Vos, J. Joossens, P. Van Der Veken, K. Augustyns, X. Van Ostade, A. Bogaerts, H. De Winter and W. Vanden Berghe
Front. Immunology, 8, 1324 (2017)

452.

Detection of CO2 using CNT-based sensors: role of Fe catalyst on sensitivity and selectivity.
N. Tit, M.M. Al Ezzi, H.M. Abdullah, M. Yusupov, S. Kouser, H. Bahlouli and Z.H. Yamani
Mater. Chem. Phys., 186, 353-364 (2017)

451.

Two-dimensional WS2 nanoribbon deposition by conversion of pre-patterned amorphous silicon.
M.H. Heyne, J.-F. de Marneffe, A. Delabie, M. Caymax, E.C. Neyts, C. Huyghebaert and S. De Gendt
Nanotechnology, 28, 04LT01 (2017)

450.

Progress and prospects in nanoscale dry processes: how can we control atomic layer reactions?
K. Ishikawa, K. Karahashi, T. Ichiki, J.P. Chang, S.M. George, W.M.M. Kessels, H.J. Lee, S. Tinck, J.H. um and K. Kinoshita
Jap. J. Appl. Phys., 56, 06HA02 (2017)

449.

Toward the understanding of selective Si nano-oxidation by atomic scale simulations.
U. Khalilov, A. Bogaerts and E.C. Neyts
Acc. Chem. Res., 50, 796-804 (2017)

448.

CO2 conversion in a gliding arc plasmatron: multidimensional modeling for improved efficiency.
G. Trenchev, St. Kolev, W. Wang, M. Ramakers and A. Bogaerts
J. Phys. Chem. C, 121, 24470-24479 (2017) and supporting information.

447.

CO2 conversion in a gliding arc plasmatron: elucidating the chemistry through kinetic modeling.
S. Heijkers and A. Bogaerts
J. Phys. Chem. C, 121, 22644-22655 (2017) and supporting information.

446.

Modeling of CO2 splitting in a microwave plasma: how to improve the conversion and energy efficiency.
A. Berthelot and A. Bogaerts
J. Phys. Chem. C, 121, 8236-8251 (2017)

445.

Mechanisms of peptide oxidation by hydroxyl radicals: insight at the molecular scale.
C.C.W. Verlackt, W. Van Boxem, D. Dewaele, F. Lemière, F. Sobott, J. Benedikt, E.C. Neyts and A. Bogaerts
J. Phys. Chem. C, 121, 5787-2799 (2017) and supporting information

444.

Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes.
U. Khalilov, A. Bogaerts and E.C. Neyts
Carbon, 118, 452-457 (2017)

443.

Pressure as an additional control handle for non-thermal atmospheric plasma processes.
I. Belov, S. Paulussen and A. Bogaerts
Plasma Process. Polymers, 14, e1700046 (2017)

442.

Concurrent effects of wafer temperature and oxygen fraction on cryogenic silicon etching with SF6/O2 plasmas.
S. Tinck, T. Tillochet, V. Georgieva, R. Dussart, E. Neyts and A. Bogaerts
Plasma Process. Polymers, 14, e1700018 (2017)

441.

Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling.
J. Razzokov, M. Yusupov, S. Vanuytsel, E.C. Neyts and A. Bogaerts
Plasma Process. Polymers, 14, e1700013 (2017)

440.

Plasma-based liquefaction of methane: the road from hydrogen production to direct methane liquefaction.
R. Snoeckx, A. Rabinovich, D. Dobrynin, A. Bogaerts and A. Fridman
Plasma Process. Polymers, 14, e1600115 (2017)

439.

Plasma based CO2 and CH4 conversion: a modeling perspective.
A. Bogaerts, C. De Bie, R. Snoeckx and T. Kozak
Plasma Process. Polymers, 14, e1600070 (2017) (Selected for the cover page of the journal)

438.

Special issue: plasma conversion.
T. Nozaki, A. Bogaerts, X. Tu and R. Van de Sanden
Plasma Process. Polymers, 14, e1790061 (2017)

437.

Understanding microwave surface-wave sustained plasmas at intermediate pressure by 2D modeling and experiments.
V. Georgieva, A. Berthelot, T. Silva, St. Kolev, W. Graef, N. Britun, G. Chen, J. van der Mullen, T. Godfroid, D. Mihailova, J. van Dijk, R. Snyders, A. Bogaerts and M.-P. Delplancke-Ogletree
Plasma Process. Polymers, 14, 1600185 (2017)  (Selected for the back cover page of the journal)

436.

A comprehensive chemical model for the splitting of CO2 in non-equilibrium plasmas.
P. Koelman, S. Heijkers, S.T. Mousavi, W. Graef, D. Mihailova, T. Kozak, A. Bogaerts and J. van Dijk
Plasma Process. Polymers, 14, 1600155 (2017)

435.

Influence of gap size and dielectric constant of the packing material on the plasma behaviour in a packed bed DBD reactor: a fluid modelling study.
K. Van Laer and A. Bogaerts
Plasma Process. Polymers, 14, 1600129 (2017)

434.

Quasi-neutral modeling of gliding arc plasmas.
St. Kolev, S. Sun, G. Trenchev, W. Wang, H. Wang and A. Bogaerts
Plasma Process. Polymers, 14, 1600110 (2017)

433.

Special issue on numerical modelling of low-temperature plasmas for various applications - Part II: Research papers on numerical modelling for various plasmas.
A. Bogaerts and L.L. Alves
Plasma Process. Polymers, 14, e1790041 (2017)

432.

Molecular dynamics simulations for plasma-surface interactions.
E.C. Neyts and P. Brault
Plasma Process. Polymers, 14, 1600145 (2017)

431.

Synthesis of micro- and nanomaterials in CO2 and CO dielectric barrier discharges.
I. Belov, J. Vanneste, M. Aghaee, S. Paulussen and A. Bogaerts
Plasma Process. Polymers, 14, 1600065 (2017)

430.

Special issue on numerical modelling of low-temperature plasmas for various applications - Part I: Review and tutorial papers on numerical modelling approaches.
A. Bogaerts and L.L. Alves
Plasma Process. Polymers, 14, 1690011 (2017)

429.

Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
M. Yusupov, J. Van der Paal, E.C. Neyts and A. Bogaerts
Biochim. Biophys. Acta, 1861, 839-847 (2017)

428.

Inductively coupled plasma-mass spectrometry: insights through computer modeling.
A. Bogaerts and M. Aghaei
J. Anal. Atom. Spectrom., 32, 233-261 (2017)  (invited review paper) (Selected for the cover page of the journal)

427.

How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching.
U. Khalilov, A. Bogaerts, B. Xu, T. kato, T. Kaneko and E.C. Neyts
Nanoscale, 9, 1653-1661 (2017)

426.

The 2017 plasma roadmap: low temperature plasma science and technology.
I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S. Mededovic Thagard, H.-R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z.Lj. Petrovic, L.C. Pitchford, Y.-K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. van de Sanden and A. Vardelle
J. Phys. D: Appl. Phys., 50, 323001 (2017)

425.

Nanoscale mechanisms of CNT growth and etching in plasma environment.
U. Khalilov, A. Bogaerts, S. Hussain, E. Kovacevic, P. Brault, C. Boulmer-Leborgne and E.C. Neyts
J. Phys. D: Appl. Phys., 50, 184001 (2017)

424.

Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge.
A. Ozkan, A. Bogaerts and F. Reniers
J. Phys. D: Appl. Phys., 50, 084004 (2017)

423.

Atomic scale behavior of oxygen-based radicals in water.
C.C.W. Verlackt, E.C. Neyts and A. Bogaerts
J. Phys. D: Appl. Phys., 50, 11LT01 (2017)

422.

DFT study of Ni-catalyzed plasma dry reforming of methane.
M. Shirazi, E.C. Neyts and A. Bogaerts
Appl. Catalysis B: Environm., 205, 605-614 (2017)

421.

Hampering effect of cholesterol on the permeation of reactive oxygen species through phospholipids bilayer: possible explanation for plasma cancer selectivity.
J. Van der Paal, C. Verheyen, E.C. Neyts and A. Bogaerts
Scientif. Rep., 7, 39526 (2017) and its supplementary information.

420.

Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity.
W. Van Boxem, J. Van der Paal, Y. Gorbanev, S. Vanuytsel, E. Smits, S. Dewilde and A. Bogaerts
Scientif. Rep., 7, 16478 (2017)  including its supplementary information.

419.

Elucidation of plasma-induced chemical modifications on glutathione and glutathione disulphide.
C. Klinkhammer, C. Verlackt, D. Smilowicz, F. Kogelheide, A. Bogaerts, N. Metzler-Nolte, K. Stapelmann, M. Havenith and J.-W. Lackmann
Scientif. Rep., 7, 13828 (2017)

418.

Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments.
M. Yusupov, K. Wende, S. Kupsch, E.C. Neyts, S. Reuter and A. Bogaerts
Scientif. Rep., 7, 5761 (2017) and its supplementary information.

417.

Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2 conversion.
M. Ramakers, J.A. Medrano, G. Trenchev, F. Gallucci and A. Bogaerts
Plasma Sources Sci. Technol., 26, 125002 (2017)

416.

Modeling of CO2 plasma: effect of uncertainties in the plasma chemistry.
A. Berthelot and A. Bogaerts
Plasma Sources Sci. Technol., 26, 115002 (2017)

415.

How bead size and dielectric constant affect the plasma behaviour in a packed bad plasma reactor: a modelling study.
K. Van Laer and A. Bogaerts
Plasma Sources Sci. Technol., 26, 085007 (2017)

414.

CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design.
A. Bogaerts, A. Berthelot, S. Heijkers, St. Kolev, R. Snoeckx, S. Sun, G. Trenchev, K. Van Laer and W. Wang
Plasma Sources Sci. Technol., 26, 063001 (2017)

413.

Investigations of discharge and post-discharge in a gliding arc: a 3D computational study.
S.R. Sun, S. Kolev, H.X. Wang and A. Bogaerts
Plasma Sources Sci. Technol., 26, 055017 (2017)  Selected by the editor as “featured article” (IF 3.939).

412.

QDB: a new database of plasma chemistries and reactions.
J. Tennyson, S. Rahimi, C. Hill, L. Tse, A. Vibhakar, D. Akello-Egwel, D.B. Brown, A. Dzarasova, J.R. Hamilton, D. Jaksch, S. Mohr, K. Wren-Little, J. Bruckmeier, A. Agarwal, K. Bartschat, A. Bogaerts, J.-P. Booth, M.J. Goeckner, K. Hassouni, Y. Itikawa, B.J. Braams, E. Krishnakumar, A. Laricchiuta, N.J. Mason, S. Pandey, Z.Lj. Petrovic, Y.-K. Pu, A. Ranjan, S. Rauf, J. Schulze, M.M. Turner, P. Ventzek, J.C. Whitehead and J.-S. Yoon
Plasma Sources Sci. Technol., 26, 055014 (2017)

411.

Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs.
G. Trenchev, St. Kolev and Zh. Kiss'ovski
Plasma Sources Sci. Technol., 26, 055013 (2017)

410.

Formation of microdischarges inside a mesoporous catalyst in dielectric barrier discharge plasmas.
Y. Zhang, H.-y. Wang, Y.-r. Zhang and A. Bogaerts
Plasma Sources Sci. Technol., 26, 054002 (2017)

409.

Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics.
S.R. Sun, St. Kolev, H.X. Wang and A. Bogaerts
Plasma Sources Sci. Technol., 26, 015003 (2017)

2016

408.

CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity?
R. Snoeckx, S. Heijkers, K. Van Wesenbeeck, S. Lenaerts and A. Bogaerts
Energy Environm. Sci., 9, 999-1011 (2016) and its supplementary information.

407.

Particle transport through an inductively coupled plasma torch: elemental droplet evaporation.
M. Aghaei and A. Bogaerts
J. Anal. Atom. Spectrom., 31, 631-641 (2016)  (Selected for the cover page of the journal  /   Selected as a HOT article in 2015)

406.

Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells.
S. Vermeylen, J. De Waele, S. Vanuytsel, J. De Backer, J. Van der Paal, M. Ramakers, K. Leyssens, E. Marcq, J. Van Audenaerde, E.L.J. Smits, S. Dewilde and A. Bogaerts
Plasma Process. Polymers, 13, 1195-1205 (2016)  Supplementary information.

405.

Plasma processes and polymers third issue on plasma and cancer.
M. Laroussi, A. Bogaerts and N. Barekzi
Plasma Process. Polymers, 13, 1142-1143 (2016)

404.

Ion clouds in the inductively coupled plasma torch: a closer look through computations.
M. Aghaei, H. Lindner and A. Bogaerts
Anal. Chem., 88, 8005-8018 (2016)

403.

Multilayer MoS2 growth by metal and metal oxide sulfurization.
M.H. Heyne, D. Chiappe, J. Meersschaut, T. Nuytten, T. Conard, H. Bender, C. Huyghebaert, I.P. Radu, M. Caymax, J.-F. de Marneffe, E.C. Neyts and S. De Gendt
J. Mater. Chem. C., 4, 1295-1304 (2016)

402.

Size-dependent strain and surface energies of gold nanoclusters.
S. Ali, V.S. Myasnichenko and E.C. Neyts
Phys. Chem. Chem. Phys., 18, 792-800 (2016)

401.

Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations.
K.M. Bal and E.C. Neyts
Chem. Sci., 7, 5280-5286 (2016)

400.

Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress.
J. Van der Paal, E.C. Neyts, C.C.W. Verlackt and A. Bogaerts
Chem. Sci., 7, 489-498 (2016)

399.

Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes.
P. Attri, M. Yusupov, J.H. Park, L.P. Lingamdinne, J.R. Koduru, M. Shiratani, E.H. Choi and A. Bogaerts
Scientif. Rep., 6, 34419 (2016)

398.

Structural modification of P-glycoprotein induced by OH radicals: insights from atomistic simulations.
N. Khosravian, B. Kamaraj, E.C. Neyts and A. Bogaerts
Scientif. Rep., 6, 19466 (2016)

397.

Plasma-surface interactions in plasma catalysis.
E.C. Neyts
Plasma Chem. Plasma Process., 36, 185-212 (2016)

396.

Special issue of papers by plenary and topical invited lecturers at the 22nd International Symposium on Plasma Chemistry (ISPC 22), 5–10 July 2015, Antwerp, Belgium: Introduction.
A. Bogaerts and R. van de Sanden
Plasma Chem. Plasma Process., 36, 1-2 (2016)

395.

Influence of the material dielectric constant on plasma generation inside catalyst pores.
Y.-R. Zhang, E.C. Neyts and A. Bogaerts
J. Phys. Chem. C, 120, 25923-25934 (2016)

394.

CO2 hydrogenation in a dielectric barrier discharge plasma revealed.
C. De Bie, J. van Dijk and A. Bogaerts
J. Phys. Chem. C, 120, 25210-25224 (2016)

393.

How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001).
S. Huygh, A. Bogaerts and E.C. Neyts
J. Phys. Chem. C, 120, 21659-21669 (2016)

392.

Selective plasma oxidation of ultrasmall Si nanowires.
U. Khalilov, M. Yusupov, A. Bogaerts and E.C. Neyts
J. Phys. Chem. C, 120, 472-477 (2016)

391.

Elucidating the effects of gas flow rate on an SF6 inductively coupled plasma and on the silicon etch rate, by a combined experimental and theoretical investigation.
S. Tinck, T. Tillocher, R. Dussart, E.C. Neyts and A. Bogaerts
J. Phys. D: Appl. Phys., 49, 385201 (2016)

390.

Role of vibrationally excited HBr in a HBr/He inductively coupled plasma used for etching of silicon.
S. Tinck and A. Bogaerts
J. Phys. D: Appl. Phys., 49, 245204 (2016)

389.

Computational study of the CF4/CHF3/H2/Cl2/O2/HBr gas phase plasma chemistry.
S. Tinck and A. Bogaerts
J. Phys. D: Appl. Phys., 49, 195203 (2016)

388.

A parametric model for reactive high-power impulse magnetron sputtering of films.
T. Kozák and J. Vlček
J. Phys. D: Appl. Phys., 49, 055202 (2016)

387.

Multi-level molecular modelling for plasma medicine.
A. Bogaerts, N. Khosravian, J. Van der Paal, C.C.W. Verlackt, M. Yusupov, B. Kamaraj and E.C. Neyts
J. Phys. D: Appl. Phys., 49, 054002 (2016)

386.

Can plasma be formed in catalyst pores?  A modeling investigation.
Y.-R. Zhang, K. Van Laer, E.C. Neyts and A. Bogaerts
Appl. Catal. B: Environm., 185, 56-67 (2016)

385.

CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model.
W. Wang, A. Berthelot, St. Kolev, X. Tu and A. Bogaerts
Plasma Sources Sci. Technol., 25, 065012 (2016)

384.

Effective ionisation coefficients and critical breakdown electric field of CO2 at elevated temperature: effect of excited states and ion kinetics.
W. Wang and A. Bogaerts
Plasma Sources Sci. Technol., 25, 055025 (2016) (Designated by the editors of Plasma Sources Science and Technology as a “Featured article" and selected for an invited LabTalk)

383.

Modeling plasma-based CO2 conversion: crucial role of the dissociation cross section.
A. Bogaerts, W. Wang, A. Berthelot and V. Guerra
Plasma Sources Sci. Technol., 25, 055016 (2016)

382.

DBD in burst mode: solution for more efficient CO2 conversion?
A. Ozkan, T. Dufour, T. Silva, N. Britun, R. Snyders, F. Reniers and A. Bogaerts
Plasma Sources Sci. Technol., 25, 055005 (2016)

381.

Plasma-liquid interactions: a review and roadmap.
P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F .Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.Lj. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui and G. Zvereva
Plasma Sources Sci. Technol., 25, 053002 (2016)

380.

Modeling of plasma-based CO2 conversion: lumping of the vibrational levels.
A. Berthelot and A. Bogaerts
Plasma Sources Sci. Technol., 25, 045022 (2016)

379.

How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?
A. Ozkan, T. Dufour, A. Bogaerts and F. Reniers
Plasma Sources Sci. Technol., 25, 045016 (2016)

378.

A 3D model of a reverse vortex flow gliding arc reactor.
G. Trenchev, St. Kolev and A. Bogaerts
Plasma Sources Sci. Technol., 25, 035014 (2016) (Among the top 30 most cited papers in Plasma Sources Sci. Technol. since 2015)

377.

The influence of power and frequency on the filamentary behavior of a flowing DBD - application to the splitting of CO2.
A. Ozkan, T. Dufour, T. Silva, N. Britun, R. Snyders, A. Bogaerts and F. Reniers
Plasma Sources Sci. Technol., 25, 025013 (2016)

376.

Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency.
I. Belov, S. Paulussen and A. Bogaerts
Plasma Sources Sci. Technol., 25, 015023 (2016)

375.

Fluid modelling of a packed bed dielectric barrier discharge plasma reactor.
K. Van Laer and A. Bogaerts
Plasma Sources Sci. Technol., 25, 015002 (2016)

374.

 

Different pressure regimes of a surface-wave discharge in argon: a modeling investigation.
A. Berthelot, S. Kolev and A. Bogaerts
in: Microwave discharges: Fundamentals and applications, A. Gamero and A. Sola (Eds.), UCOPress, Cordoba, Spain (2016), pp. 57-62

373.

Computer modeling of a microwave discharge used for CO2 splitting.
A. Bogaerts, A. Berthelot, S. Heijkers and T. Kozak
in: Microwave discharges: Fundamentals and applications, A. Gamero and A. Sola (Eds.), UCOPress, Cordoba, Spain (2016), pp. 41-50

372.

Glow discharge optical spectroscopy and mass spectrometry.
A. Bogaerts
in: Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), John Wiley & Sons Ltd., New York, NY, U.S.A. (2016) DOI: 10.1002/9780470027318.a5107.pub3

2015

371.

Plasma catalysis: synergistic effects at the nanoscale.
E.C. Neyts, K. Ostrikov, M.K. Sunkara and A. Bogaerts
Chem. Rev., 115, 13408-13446 (2015)

370.

Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.
R. Aerts, W. Somers and A. Bogaerts
ChemSusChem, 8, 702-716 (2015)

369.

Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors.
U. Khalilov, A. Bogaerts and E.C. Neyts
Nat. Commun., 6, 10306 (2015)

368.

Plasma-based conversion of CO2: current status and future challenges.
A. Bogaerts, T. Kozák, K. Van Laer and R. Snoeckx
Faraday Discuss., 183, 217-232 (2015)

367.

CO2 reduction reactions: general discussion.
M. North, P. Abrantes, E. Remiezowicz, A. Bardow, J. Dodson, T. Manning, J. Albo, D. Reed, D. Harris, I. Ingram, A. Cowan, M. Moss, G.V.S.M. Carrera, A. Foote, E. Fraga, P. Styring, A. Bogaerts, G. Centi, A. Navarrete, J. Comerford, G. Dowson, A. Coogan, T. Butterworth, K. Lamb, M. Aresta, C. Janaky, R. Heyn, W. Webb, G. van Rooij, N. Meine, V. Meynen, R. Michez, D. Churina, K. Dossumov, X. Du, J. Spooren, M. Herskowitz, K. Michiels and C. Capacchione
Faraday Discuss., 183, 261-290 (2015)

366.

Nanoscale thermodynaic aspects of plasma catalysis.
E.C. Neyts and K. Ostrikov
Catal. Today, 256, 23-28 (2015)

365.

Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc.
M.K. Samani, X.Z. Ding, N. Khosravian, B. Amin-Ahmadi, Yang Yi, G. Chen, E.C. Neyts, A. Bogaerts and B.K. Tay
Thin Solid Films, 578, 133-138 (2015)

364.

Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor.
K. Van Laer and A. Bogaerts
Energy Technol., 3, 1038-1044 (2015)

363.

Merging metadynamics into hyperdynamics: accelerated molecular simulations reaching time scales from microseconds to seconds.
K.M. Bal and E.C. Neyts
J. Chem. Theory Computat., 11, 4545-4554 (2015)

362.

A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma.
J.H. Park, N. Kumar, D.H. Park, M. Yusupov, E.C. Neyts, C.C.W. Verlackt, A. Bogaerts, M.H. Kang, H.S. Uhm, E.H. Choi and P. Attri
Scientif. Rep., 5, 13849 (2015)  Supplementary information available through the journal's website.

361.

Structure and function of p53-DNA complexes with inactivation and rescue mutations: a molecular dynamics simulation study.
B. Kamaraj and A. Bogaerts
PLoS One, 10, 0134638 (2015)

360.

Effects of feedstock availability on the negative ion behavior in a C4F8 inductively coupled plasma.
S.-X. Zhao, F. Gao, Y.-P. Wang, Y.-N. Wang and A. Bogaerts
J. Appl. Phys., 118, 033301 (2015)
Copyright (2015) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: http://scitation.aip.org/content/aip/journal/jap/118/3/10.1063/1.4926867

359.

Bulk plasma fragmentation in a C4F8 inductively coupled plasma: a hybrid modeling study.
S.-X. Zhao, Y.-R. Zhang, F. Gao, Y.-N. Wang and A. Bogaerts
J. Appl. Phys., 117, 243303 (2015)
Copyright (2015) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: http://scitation.aip.org/content/aip/journal/jap/117/24/10.1063/1.4923230

358.

The dominant pathways for the conversion of methane into oxygenates and syngas in an atmospheric pressure dielectric barrier discharge.
C. De Bie, J. van Dijk and A. Bogaerts
J. Phys. Chem. C, 119, 22331-22350 (2015)

357.

CO2 conversion in a microwave plasma reactor in the presence of N2: elucidating the role of vibrational levels.
S. Heijkers, R. Snoekx, T. Kozák, T. Silva, T. Godfroid, N. Britun, R. Snyders and A. Bogaerts
J. Phys. Chem. C, 119, 12815-12828 (2015)

356.

Kinetics of energy selective Cs encapsulation in single-walled carbon nanotubes for damage-free and position-selective doping.
T. Kato, E.C. Neyts, Y. Abiko, T. Akama, R. Hatakeyama and T. Kaneko
J. Phys. Chem. C, 119, 11903-11908 (2015)

355.

Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies.
S. Huygh and E.C. Neyts
J. Phys. Chem. C, 119, 4908-4921 (2015)

354.

Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge.
R. Snoeckx, Y.X. Zeng, X. Tu and A. Bogaerts
RSC Advances, 5, 29799-29808 (2015) Supplementary material available through the journal's website.

353.

Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field.
C.C.W. Verlackt, E.C. Neyts, T. Jacob, D. Fantauzzi, M. Golkarem, Y.-K. Shin, A.C.T. van Duin and A. Bogaerts
New J. Phys., 17, 103005 (2015)  (selected as one of the IOPselect publications)

352.

Two-dimensional particle-in cell / Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure.
Y. Zhang, H.-y. Wang, W. Wang and A. Bogaerts
New J. Phys., 17, 083056 (2015)

351.

Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure.
W. Van Gaens, S. Iseni, A. Schmidt-Bleker, K.-D. Weltmann, S. Reuter and A. Bogaerts
New J. Phys., 17, 033003 (2015)

350.

Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge.
M. Ramakers, I. Michielsen, R. Aerts, V. Meynen and A. Bogaerts
Plasma Process. Polymers, 12, 755-763 (2015)

349.

Inactivation of the endotoxic biomolecule Lipd A by oxygen plasma species: a reactive molecular dynamics study.
M. Yusupov, E.C. Neyts, C.C. Verlackt, U. Khalilov, A.C.T. van Duin and A. Bogaerts
Plasma Process. Polymers, 12, 162-171 (2015)

348.

CO2-CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge.
A. Ozkan, T. Dufour, G. Arnoult, P. De Keyzer, A. Bogaerts and F. Reniers
J. CO2 Utilization, 9, 74-81 (2015)

347.

Fluid simulation of the bias effect in inductive/capacitive discharges.
Y.-R. Zhang, F. Gao, X.-C. Li, A. Bogaerts and Y.-N. Wang
J. Vacuum Sci. Technol. A, 33, 06133 (2015)

346.

Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime.
Y.-R. Zhang, S. Tinck, P. De Schepper, Y.-N. Wang and A. Bogaerts
J. Vacuum Sci. Technol. A, 33, 021310 (2015)

345.

Electromagnetic effects in high-frequency large-area capacitive discharges: a review.
Y.-X. Liu, Y.-R. Zhang, A. Bogaerts and Y.-N. Wang
J. Vacuum Sci. Technol. A, 33, 020801 (2015)

344.

Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation.
S. Dumpala, S.R. Broderick, U. Khalilov, E.C. Neyts, A.C.T. van Duin, J. Provine, R.T. Howe and K. Rajan
Appl. Phys. Lett., 106, 011602 (2015)
Copyright (2015) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: http://scitation.aip.org/content/aip/journal/apl/106/1/10.1063/1.4905442

343.

Similarities and differences between gliding glow and gliding arc discharges.
St. Kolev and A. Bogaerts
Plasma Sources Sci. Technol., 24, 065023 (2015)

342.

Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis.
K. Peerenboom, A. Parente, T. Kozák, A. Bogaerts and G. Degrez
Plasma Sources Sci. Technol., 24, 025004 (2015)

341.

A 2D model for a gliding arc discharge.
St. Kolev and A. Bogaerts
Plasma Sources Sci. Technol., 24, 015025 (2015)

340.

Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model.
T. Kozák and A. Bogaerts
Plasma Sources Sci. Technol., 24, 015024 (2015)

339.

Modeling and experimental study of tricholoroethylene abatement with a negative dirrect current corona discharge.
A.M. Vandenbroucke, R. Aerts, W. Van Gaens, N. De Geyter, C. Leys, R. Morent and A. Bogaerts
Plasma Chem. Plasma Process., 35, 217-230 (2015)

338.

Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet.
K. Wende, P. Williams, J. Dalluge, W. Van Gaens, H. Aboubakr, J. Bischof, Th. von Woedtke, S.M. Goyal, K.-D. Weltmann, A. Bogaerts, K. Masur and P.J. Bruggeman
Biointerphases, 10, 029518 (2015)

337.

How do plasma-generated OH radicals react with biofilm components?  Insights from atomic scale simulations.
N. Khosravian, A. Bogaerts, S. Huygh, M. Yusupov and E.C. Neyts
Biointerphases, 10, 029501 (2015)

336.

Cryogenic etching of silicon with SF6 inductively coupled plasmas: a combined modelling and experimental study.
S. Tinck, T. Tillocher, R. Dussart and A. Bogaerts
J. Phys. D: Appl. Phys., 48, 155204 (2015)

335.

Structural modification of the skin barrier by OH radicals: a reactive molecular dynamics study for plasma medicine.
J. Van der Paal, C.C. Verlackt, M. Yusupov, E.C. Neyts and A. Bogaerts
J. Phys. D: Appl. Phys., 48, 155202 (2015)

334.

Numerical investigation of HBr/He transformer coupled plasmas used for silicon etching.
B. Gul, S. Tinck, P. De Schepper, Aman-ur-Rehman and A. Bogaerts
J. Phys. D: Appl. Phys., 48, 025202 (2015)

333.

Efficient amorphous platinum catalyst cluster growth on porous carbon: a combined molecular dynamics and experimental study.
X. Lu, P. Brault, C. Coutanceau, J.-M. Bauchire, A. Caillard, S. Baranton, J. Berndt and E.C. Neyts
Appl. Catal. B: Environm., 162, 21-26 (2015)

2014

332.

Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model.
T. Kozák and A. Bogaerts
Plasma Sources Sci. Technol., 23, 045004 (2014)
(Selected by the editors of Plasma Sources Science and Technology as one of the “Highlights of 2014" and selected for an invited LabTalk)

331.

Reaction pathways of biomedically active species in an Ar plasma jet.
W. Van Gaens and A. Bogaerts
Plasma Sources Sci. Technol., 23, 035015 (2014)
(Selected by the editors of Plasma Sources Science and Technology as one of the “Highlights of 2014")

330.

Fluorine-silicon surface reactions during cryogenic and near room temperature etching.
S. Tinck, E.C. Neyts and A. Bogaerts
J. Phys. Chem. C, 118, 30315-30324 (2014)

329.

On the time scale associated with Monte carlo simulations.
K.M. Bal and E.C. Neyts
J. Chem. Phys., 141, 204104 (2014)
Copyright (2014) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Chemical Physics and may be found at: http://scitation.aip.org/content/aip/journal/jcp/141/20/10.1063/1.4902136
(Selected by Editors of The Journal of Chemical Physics as one "of the most innovative and influential articles in the field of chemical physics" published in the journal in 2014)

328.

Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide.
S. Huygh, A. Bogaerts, A.C.T. van Duin and E.C. Neyts
Comput. Mater. Sci., 95, 579-591 (2014)  Supplementary material available through the journal's website.

327.

Ion irradiation for improved graphene network formation in carbon nanotube growth.
E.C. Neyts and A. Bogaerts
Carbon, 77, 790-795 (2014)

326.

Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors.
W. Jiang, Y. Zhang and A. Bogaerts
New. J. Phys., 16, 113036 (2014)

325.

Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet.
W. Van Gaens, P.J. Bruggeman and A. Bogaerts
New J. Phys., 16, 063054 (2014)

324.

Microscopic mechanisms of vertical graphene and carbon nanotube cap nucleation from hydrocarbon growth precursors.
U. Khalilov, A. Bogaerts and E.C. Neyts
Nanoscale, 6, 9206-9214 (2014)
(Selected by Editors of Nanoscale as one of the "101 papers in the 2014 Nanoscale Hot Paper collection" published in the journal in 2014)

323.

Reactive molecular dynamics simulations for a better insight in plasma medicine.
A. Bogaerts, M. Yusupov, J. Van der Paal, C.C.W. Verlackt and E.C. Neyts
Plasma Process. Polymers, 11, 1156-1168 (2014)

322.

In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma.
R. Aerts, R. Snoeckx and A. Bogaerts
Plasma Process. Polymers, 11, 985-992 (2014) (Selected for the cover of the journal)

321.

Incorporation of fluorescent dyes in atmospheric plasma coatings for in-line monitoring of coating homogeneity.
W. Somers, M.F. Dubreuil, E.C. Neyts, D. Vangeneugden and A. Bogaerts
Plasma Process. Polymers, 11, 678-684 (2014)

320.

Formation of a nanoscale SiO2 capping layer on photoresist lines with an Ar/SiCl4/O2 inductively coupled plasma: a modeling investigation.
S. Tinck, E. Altamirano-Sanchez, P. De Schepper and A. Bogaerts
Plasma Process. Polymers, 11, 52-62 (2014)

319.

Phase modulation in pulsed dual-frequency capacitively coupled plasmas.
D.-Q. Wen, Q.-Z. Zhang, W. Jiang, Y.-H. Song, A. Bogaerts and Y.-N. Wang
J. Appl. Phys., 115, 233303 (2014)
Copyright (2014) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: http://scitation.aip.org/content/aip/journal/jap/115/22/10.1063/1.4882297

318.

Heating mode transition in a hybrid direct current / dual-frequency capacitively coupled CF4 discharge.
Q.-Z. Zhang, Y.-N. Wang and A. Bogaerts
J. Appl. Phys., 115, 223302 (2014)
Copyright (2014) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: http://scitation.aip.org/content/aip/journal/jap/115/22/10.1063/1.4882297

317.

Computational study of plasma sustainability in radio frequency micro-discharges.
Y. Zhang, W. Jiang, Q.Z. Zhang and A. Bogaerts
J. Appl. Phys., 115, 193301 (2014)
Copyright (2014) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: http://scitation.aip.org/content/aip/journal/jap/115/19/10.1063/1.4878161

316.

Interactions of plasma species on nickel catalysts: a reactive molecular dynamics study on the influence of temperature and surface structure.
W. Somers, A. Bogaerts, A.C.T. van Duin and E.C. Neyts
Appl. Catal. B: Environm., 154-155, 1-8 (2014)

315.

Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis.
O. Borovinskaya, M. Aghaei, L. Flamigni, B. Hattendorf, M. Tanner, A. Bogaerts and D. Günther
J. Anal. Atom. Spectrom., 29, 262-271 (2014) (selected for the front cover)

314.

Occurrence of gas flow rotational motion inside the ICP torch: a computational and experimental study.
M. Aghaei, L. Flamigni, H. Lindner, D. Günther and A. Bogaerts
J. Anal. Atom. Spectrom., 29, 249-261 (2014) (selected for the inside front page of the journal)

313.

Kinetic simulation of direct-current driven microdischarges in argon at atmospheric pressure.
Y. Zhang, W. Jiang and A. Bogaerts
J. Phys. D: Appl. Phys., 47, 435201 (2014)

312.

CF4 decomposition in a low-pressure ICP: influence of applied power and O2 content.
M. Setareh, M. Farnia, A. Maghari and A. Bogaerts
J. Phys. D: Appl. Phys., 47, 355205 (2014)

311.

Computer simulations of plasma-biomolecule and plasma-tissue interactions for a better insight in plasma medicine. (Topical review)
E.C. Neyts, M. Yusupov, C.C. Verlackt and A. Bogaerts
J. Phys. D: Appl. Phys., 47, 293001 (2014)
(Selected by Editors of the Journal of Physics D as one of the exclusive "Highlights of 2014" published in the journal in 2014)

310.

Understanding plasma catalysis through modelling and simulation - a review.
E.C. Neyts and A.Bogaerts
J. Phys. D: Appl. Phys., 47, 224010 (2014)
(Selected by Editors of the Journal of Physics D as one of the exclusive "Highlights of 2014" published in the journal in 2014)

309.

Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations.
T. Dufour, J. Minnebo, S. Abou Rich, E.C. Neyts, A. Bogaerts and F. Reniers
J. Phys. D: Appl. Phys., 47, 224007 (2014)

308.

Preface: Special issue on fundamentals of plasma-surface interactions.
A. Bogaerts, E.C. Neyts and A. Rousseau
J. Phys. D: Appl. Phys., 47, 220301 (2014)

307.

Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine.
M. Yusupov, E.C. Neyts, P. Simon, G. Berdiyorov, R. Snoecks, A.C.T. van Duin and A. Bogaerts
J. Phys. D: Appl. Phys., 47, 025205 (2014)

2013

306.

Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids.
K. Ostrikov, E.C. Neyts and M. Meyyappan
Adv. Phys., 62, 113-224 (2013)

305.

Gas purification by nonthermal plasma: a case study of ethylene.
R. Aerts, X. Tu, W. Van Gaens, J.C. Whitehead and A.Bogaerts
Environ. Sci. Technol., 47, 6478-6485 (2013)

304.

On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition.
M. Shariat, B. Shokri and E.C. Neyts
Chem. Phys. Lett., 590, 131-135 (2013)

303.

Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2.
R. Snoeckx, M. Setareh, R. Aerts, P. Simon, A. Maghari and A. Bogaerts
Int. J. Hydrogen Energy, 38, 16098-16120 (2013)

302.

Modeling ultrashort laser-induced emission from a negatively biased metal.
W. Wendelen, B.Y. Mueller, D. Autrique, A. Bogaerts and B. Rethfeld
Appl. Phys. Lett., 103, 221603 (2013)
Copyright (2013) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: http://scitation.aip.org/content/aip/journal/apl/103/22/10.1063/1.4830378

301.

Revisiting the interplay between ablation, collisional, and radiative processes during ns-laser ablation.
D. Autrique, I. Gornushkin, V. Alexiades, Z. Chen, A. Bogaerts and B. Rethfeld
Appl. Phys. Lett., 103, 174102 (2013)
Copyright (2013) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: http://scitation.aip.org/content/aip/journal/apl/103/17/10.1063/1.4826505

300.

Plasma enhanced growth of single walled carbon nanotubes at low temperature: a reactive molecular dynamics simulation.
M. Shariat, S.I. Hosseini, B. Shokri and E.C. Neyts
Carbon, 65, 269-276 (2013)

299.

Numerical investigation of SiO2 coating deposition in wafer processing reactors with SiCl4/O2/Ar inductively coupled plasmas.
S. Tinck, P. De Schepper and A. Bogaerts
Plasma Proc. Polym. 10, 714-730 (2013)

298.

Stability of Si epoxide defects in Si nanowires: a mixed reactive force field / DFT study.
B. Schoeters, E.C. Neyts, U. Khalilov, G. Pourtois and B. Partoens
Phys. Chem. Chem. Phys., 15, 15091-15097 (2013)

297.

The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP.
M. Aghaei, H. Lindner and A. Bogaerts
J. Anal. Atom. Spectrom., 28, 1485-1492 (2013)

296.

The role of mass removal mechanisms in the onset of ns-laser induced plasma formation.
D. Autrique, G. Clair, D. L’Hermite, V. Alexiades, A. Bogaerts and B. Rethfeld
J. Appl. Phys., 114, 023301 (2013)
Copyright (2013) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: http://jap.aip.org/resource/1/japiau/v114/i2/p023301_s1.

295.

Temperature influence on the reactivity of plasma species on a nickel catalyst surface: an atomic scale model.
W. Somers, A. Bogaerts, A.C.T. van Duin, S. Huygh, K.M. Bal and E.C. Neyts
Catal. Today, 211, 131-136 (2013)

294.

Interaction of O and OH radicals with a simple model system for lipids in the skin barrier: a reactive molecular dynamics investigation for plasma medicine.
J. Van der Paal, S. Aernouts, A.C.T. van Duin, E.C. Neyts and A. Bogaerts
J. Phys. D: Appl. Phys., 46, 395201 (2013)

293.

Kinetic modelling for an atmospheric pressure argon plasma jet in humid air.
W. Van Gaens and A. Bogaerts
J. Phys. D: Appl. Phys., 46, 275201 (2013)
Corrigendum: Kinetic modelling for an atmospheric pressure argon plasma jet in humid air (2013 J. Appl. Phys. D: Appl. Phys. 46 275201).
W. Van Gaens and A. Bogaerts
J. Phys. D: Appl. Phys., 47, 079502 (2014)

292.

Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms.
S. Zhang, W. Van Gaens, B. Van Gessel, S. Hofmann, E. Van Veldhuizen, A. Bogaerts and P. Bruggeman
J. Phys. D: Appl. Phys., 46, 205202 (2013) Selected as one of the highlights of 2013

291.

New mechanisms for oxidation of native silicon oxide.
U. Khalilov, G. Pourtois, S. Huygh, A.C.T. van Duin, E.C. Neyts and A. Bogaerts
J. Phys. Chem. C, 117, 9819-9825 (2013)

290.

Plasma-induced destruction of bacterial cell wall components: a reactive molecular dynamics simulation.
M. Yusupov, A. Bogaerts, S. Huygh, R. Snoeckx, A.C.T. van Duin and E.C. Neyts
J. Phys. Chem. C, 117, 5993-5998 (2013)

289.

Plasma-based dry reforming: a computational study ranging from the nanoseconds to seconds time scale.
R. Snoeckx, R. Aerts, X. Tu and A. Bogaerts
J. Phys. Chem. C, 117, 4957-4970 (2013) [incl. supporting information]

288.

Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment.
E.C. Neyts, K. Ostrikov, Z.J. Han, S. Kumar, A.C.T. van Duin and A. Bogaerts
Phys. Rev. Lett., 110, 065501 (2013)

287.

Atomic spectroscopy.
N.H. Bings, A. Bogaerts and J.A.C. Broekaert
Anal. Chem., 85, 670-704 (2013)  (invited review paper)

286.

Combining molecular dynamics with Monte Carlo simulations: implementations and aplications.
E.C. Neyts and A. Bogaerts
Theor. Chem. Acc., 132, 1320 (2013)

285.

Heating mechanism in direct current superposed single-frequency and dual-frequency capacitively coupled plasmas.
Q.-Z. Zhang, Y.-X. Liu, W. Jiang, A. Bogaerts and Y.-N. Wang
Plasma Sources Sci. Technol., 22, 025014 (2013)

284.

Electron bounce resonance heating in dual-frequency capacitively coupled oxygen discharges.
Y.-X. Liu, Q.-Z. Zhang, J. Liu, Y.-H. Song, A. Bogaerts and Y.-N. Wang
Plasma Sources Sci. Technol., 22, 025012 (2013)

283.

Etching of low-k materials for microelectronics applications by means of a N2/H2 plasma: modelling and experimental investigation.
K. Van Laer, S. Tinck, V. Samara, J.F. de Marneffe and A. Bogaerts
Plasma Sources Sci. Technol., 22, 025011 (2013)

282.

Gas ratio effects on the Si etch ratio and profile uniformity in an inductively coupled Ar/CF4 plasma.
S.-X. Zhao, F. Gao, Y.-N. Wang and A. Bogaerts
Plasma Sources Sci. Technol., 22, 015017 (2013)

281.

Formation of single layer grapheme on nickel under far-from-equilibrium high flux conditions.
E.C. Neyts, A.C.T. van Duin and A. Bogaerts
Nanoscale, 5, 7250-7255 (2013)

280.

Atomistic modelling of CVD synthesis of carbon nanotubes and graphene.
J.A. Elliott, Y. Shibuta, H. Amara, C. Bichara and E.C. Neyts
Nanoscale, 5, 6666-6676 (2013)

279.

Reactive molecular dynamics simulations on SiO2-coated ultra-small Si-nanowires.
U. Khalilov, G. Pourtois, A. Bogaerts, A.C.T. van Duin and E.C. Neyts
Nanoscale, 5, 719-725 (2013)

2012

278.

Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: effect of electric field.
E.C. Neyts, A.C.T. van Duin and A. Bogaerts
J. Amer. Chem. Soc., 134, 1256-1260 (2012)

277.

Modeling of plasmas and plasma-surface interactions for medical, environmental and nano applications.
A. Bogaerts, R. Aerts, R. Snoeckx, W. Somers, W. Van Gaens, M. Yusupov and E. Neyts
J. Physics: Conf. Series, 399, 012011 (2012)

276.

Grain size tuning of nanocrystalline chemical vapour deposited diamond by continuous electrical bias growth: experimental and theoretical study.
V. Mordet, L. Zhang, M. Eckert, J. D’Haen, A. Soltani, M. Moreau, D. Troadec, E. Neyts, J.-C. De Jaeger, J. Verbeeck, A. Bogaerts, G. Van Tendeloo, K. Haenen and P. Wagner
Phys. Status Solidi A, 209, 1675-1682 (2012)

275.

Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion.
M.J. Mees, G. Pourtois, E.C. Neyts, B.J. Thijsse and A. Stesmans
Phys. Rev. B, 85, 134301 (2012)

274.

Optimization of operating parameters for inductively coupled plasma mass spectrometry: a computational study.
M. Aghaei, H. Lindner and A. Bogaerts
Spectrochim. Acta B, 76, 56-64 (2012)

273.

Effect of bulk field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas.
Y.-X. Liu, Q.-Z. Zhang, J. Liu, Y.-H. Song, A. Bogaerts and Y.-N. Wang
Appl. Phys. Lett., 101, 114101 (2012)
Copyright (2012) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://pubs.aip.org/aip/apl/article-abstract/101/11/114101/127227/Effect-of-bulk-electric-field-reversal-on-the?redirectedFrom=fulltext

272.

An investigation into the dominant reactions for ethylene destruction in non-thermal atmospheric plasmas.
R. Aerts, X. Tu, C. De Bie, J.C. Whitehead and A. Bogaerts
Plasma Process. Polym., 9, 994-1000 (2012)

271.

The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge.
S. Teodoru, Y. Kusano and A. Bogaerts
Plasma Process. Polym., 9, 652-689 (2012)

270.

Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI).
S. Tinck and A. Bogaerts
Plasma Process. Polym., 9, 522-539 (2012)

269.

Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls.
M. Yusupov, E.C. Neyts, U. Khalilov, R. Snoeckx, A.C.T. van Duin and A. Bogaerts
New J. Phys., 14, 093043 (2012) (selected as one of the IOPselect publications)

268.

Sputter deposition of MgxAlyOz thin films in a dual-magnetron device: a multi-species Monte Carlo model.
M. Yusupov, M. Saraiva, D. Depla and A. Bogaerts
New J. Phys., 14, 073043 (2012)

267.

Establishing uniform acceptance in force biased Monte Carlo simulations.
E.C. Neyts, B.J. Thijsse, M.J. Mees, K.M. Bal and G. Pourtois
J. Chem. Theory Comput., 8, 1865-1869 (2012)

266.

Self-limiting oxidation in small-diameter Si nanowires.
U. Khalilov, G. Pourtois, A.C.T. van Duin and E.C. Neyts
Chem. Mater., 24, 2141-2147 (2012)  (selected for the front page of the journal)

265.

Space charge corrected electron emission from an aluminium surface under non-equilibrium conditions.
W. Wendelen, B.Y. Mueller, D. Autrique, B. Rethfeld and A. Bogaerts
J. Appl. Phys., 111, 113110 (2012)
Copyright (2012) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/111/11/113110/895753/Space-charge-corrected-electron-emission-from-an?redirectedFrom=PDF

264.

Influence of vibrational states on CO2 splitting by dielectric barrier discharges.
R. Aerts, T. Martens and A. Bogaerts
J. Phys. Chem. C, 116, 23257-23273 (2012)

263.

On the c-Si|a-SiO2 interface in hyperthermal Si oxidation at room temperature.
U. Khalilov, G. Pourtois, A.C.T. van Duin and E.C. Neyts
J. Phys. Chem. C, 116, 21856-21863 (2012)

262.

Plasma species interacting with nickel surfaces: toward an atomic scale understanding of plasma-catalysis.
W. Somers, A. Bogaerts, A.C.T. van Duin and E.C. Neyts
J. Phys. Chem. C, 116, 20958-20965 (2012)

261.

Hyperthermal oxidation of Si(100)2x1 surfaces: effect of growth temperature.
U. Khalilov, G. Pourtois, A.C.T. van Duin and E.C. Neyts
J. Phys. Chem. C, 116, 8649-8656 (2012)

260.

Effect of a mass spectrometer interface on inductively coupled plasma characteristics: a computational study.
M. Aghaei, H. Lindner and A. Bogaerts
J. Anal. Atom. Spectrom., 27, 604-610 (2012)

259.

PECVD growth of carbon nanotubes: from experiment to simulation.
E.C. Neyts
J. Vac. Sci. Technol. B, 30, 030803 (2012)
(In 2014 this article is among the 10 most cited papers published in the journal in the period 2012-2013)

258.

The effect of F2 attachment by low-energy electrons on the electron behaviour in an Ar/CF4 inductively coupled plasma.
S.-X. Zhao, F. Gao Y.-N. Wang and A. Bogaerts
Plasma Sources Sci. Technol., 21, 025008 (2012)

257.

Fluid simulation of the phase-shift effect in Ar/CF4 capacitively coupled plasmas.
Y.-R. Zhang, A. Bogaerts and Y.-N. Wang
J. Phys. D: Appl. Phys., 45, 485204 (2012)

256.

Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasma characteristics.
Y.-R. Zhang, X. Xu, A. Bogaerts and Y.-N. Wang
J. Phys. D: Appl. Phys., 45, 015203 (2012)

255.

Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: I. Transient behaviour of electrodynamics and power deposition.
Y.-R. Zhang, X. Xu, A. Bogaerts and Y.-N. Wang
J. Phys. D: Appl. Phys., 45, 015202 (2012)

254.

Modeling aspects of plasma-enhanced chemical vapour deposition of carbon-based materials.
E. Neyts, M. Mao, M. Eckert and A. Bogaerts
in: Plasma Processing of Nanomaterials, R.M. Sankaran (Ed.), CRC Press, Boca Raton, Florida, U.S.A. (2011) pp. 245-290

2011

253.

Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma.
H. Lindner, A. Murtazin, S. Groh, K. Niemax and A. Bogaerts
Anal. Chem., 83, 9260-9266 (2011)

252.

Changing chirality during single-walled carbon nanotube growth: a reactive molecular dynamics/Monte Carlo study.
E.C. Neyts, A.C.T. van Duin and A. Bogaerts
J. Amer. Chem. Soc., 133, 17225-17231 (2011)

251.

Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature?
U. Khalilov, E.C. Neyts, G. Pourtois and A.C.T. van Duin
J. Phys. Chem. C, 115, 24839-24848 (2011)

250.

Hyperthermal oxygen interacting with silicon surfaces: adsorption, implantation, and damage creation.
E.C. Neyts, U. Khalilov, G. Pourtois and A.C.T. van Duin
J. Phys. Chem. C, 115, 4818-4823 (2011)

249.

Multi-element model for the simulation of inductively coupled plasmas: effects of helium addition to the central gas stream.
H. Lindner and A. Bogaerts
Spectrochim. Acta B, 66, 421-431 (2011)

248.

The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry.
H. Lindner, K.H. Loper, D.W. Hahn and K. Niemax
Spectrochim. Acta B, 66, 179-185 (2011)

247.

Understanding the surface diffusion processes during magnetron sputter-deposition of complex oxide Mg-Al-O thin films.
V. Georgieva, A.F. Voter and A. Bogaerts
Crystal Growth Design, 11, 2553-2558 (2011)

246.

The influence of Cr and Y on the micro structural evolution of Mg-Cr-O and Mg-Y-O thin films.
N. Jehanathan, V. Georgieva, M. Saraiva, D. Depla, A. Bogaerts and G. Van Tendeloo
Thin Solid Films, 519, 5388-5396 (2011)

245.

Fluid modelling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge.
C. De Bie, B. Verheyde, T. Martens, J. Van Dijk, S. Paulussen and A. Bogaerts
Plasma Process. Polym., 8, 1033-1058 (2011)

244.

Simultaneous etching and deposition processes during the etching of silicon with a Cl2/O2/Ar inductively coupled plasma.
S. Tinck, A. Bogaerts and D. Shamiryan
Plasma Process. Polym., 8, 490-499 (2011)  (selected for the front page of the journal)

243.

Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/Ar plasmas used for deep silicon etching applications.
M. Mao, Y.N. Wang and A. Bogaerts
J. Physics D: Appl. Phys., 44, 435202 (2011)

242.

Computer modelling of the plasma chemistry and plasma-based growth mechanisms for nanostructured materials.
A. Bogaerts, M. Eckert, M. Mao and E. Neyts
J. Physics D: Appl. Phys., 44, 174030 (2011)

241.

Elucidating the asymmetric behavior of the discharge in a dual magnetron sputter deposition system.
M. Yusupov, E. Bultinck, D. Depla and A. Bogaerts
Appl. Phys. Lett., 98, 131502 (2011)
Copyright (2011) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://pubs.aip.org/aip/apl/article-abstract/98/13/131502/523044/Elucidating-the-asymmetric-behavior-of-the?redirectedFrom=fulltext

240.

Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation.
M. Eckert, V. Mortet, L. Zhang, E. Neyts, J. Verbeeck, K. Haenen and A. Bogaerts
Chem. Mater., 23, 1414-1423 (2011) Selected as one of the “highlights” of Analytical Chemistry

239.

Vibrational level population of nitrogen impurities in low-pressure argon glow discharges.
P. Simon and A. Bogaerts
J. Anal. At. Spectrom., 26, 804-810 (2011)

238.

Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma.
X.-J. Si, S.-X. Zhao, X. Xu, A. Bogaerts and Y.-N. Wang
Phys. Plasmas, 18, 033504 (2011)
Copyright (2011) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Physics of Plasmas and may be found at: https://pubs.aip.org/aip/pop/article-abstract/18/3/033504/317198/Fluid-simulations-of-frequency-effects-on?redirectedFrom=fulltext

237.

Behavior of electrons in a dual-magnetron sputter deposition system: a Monte Carlo model.
M. Yusupov, E. Bultinck, D. Depla and A. Bogaerts
New J. Phys., 13, 033018 (2011)

236.

Plasma chemistry modeling for an inductively coupled plasma used for the growth of carbon nanotubes.
M. Mao and A. Bogaerts
J. Physics: Conf. Series, 275, 012021 (2011)

235.

Characaterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model.
E. Bultinck and A. Bogaerts
Plasma Sources Sci. Technol., 20, 045013 (2011)

234.

Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating.
S. Tinck, W. Boullart and A. Bogaerts
Plasma Sources Sci. Technol., 20, 045012 (2011)

233.

Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations.
C. De Bie, T. Martens, J. van Dijk, S. Paulussen, B. Verheyde, S. Corthals and A. Bogaerts
Plasma Sources Sci. Technol., 20, 024008 (2011)

232.

Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition.
S. Tinck and A. Bogaerts
Plasma Sources Sci. Technol., 20, 015008 (2011)

231.

A density-functional theory simulation of the formation of Ni-doped fullerenes by ion implantation.
E. Neyts, A. Maeyens, G. Pourtois and A. Bogaerts
Carbon, 49, 1013-1017 (2011)

2010

230.

Catalyzed growth of carbon nanotube with definable chirality by hydrid molecular dynamics – force biased Monte Carlo simulations.
E.C. Neyts, Y. Shibuta, A.C.T. van Duin and A. Bogaerts
ACSNano, 10, 6665-6672 (2010)

229.

Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas.
Y.-R. Zhang, X. Xu, S.-X. Zhao, A. Bogaerts and Y.-N. Wang
Phys. Plasmas, 17, 113512 (2010)
Copyright (2010) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Physics of Plasmas and may be found at: https://pubs.aip.org/aip/pop/article-abstract/17/11/113512/108032/Comparison-of-electrostatic-and-electromagnetic?redirectedFrom=fulltext

228.

Glow discharge basics.
A. Bogaerts
in: The Encyclopedia of Mass Spectrometry, volume 5: Elemental and Isotope Ratio Mass Spectrometry, M.L. Gross and R.M. Caprioli (Eds.), Elsevier, Oxford, U.K. (2010), pp. 291-302

227.

Differences between ultrananocrystalline and nanocrystalline diamond growth: theoretical investigation of CxHy species at diamond step edges.
M. Eckert, E. Neyts and A. Bogaerts
Crystal Growth Design, 10, 4123-4134 (2010)

226.

Insights into the growth of (ultra)nanocrystalline diamond by combined molecular dynamics and Monte Carlo simulations.
M. Eckert, E. Neyts and A. Bogaerts
Crystal Growth Design, 10, 3005-3021 (2010)

225.

Atomic spectroscopy: a review.
N.H. Bings, A. Bogaerts and J.A.C. Broekaert
Anal. Chem., 82, 4653-4681 (2010)  (invited review paper)

224.

Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges.
S. Paulussen, B. Verheyde, X. Tu, C. De Bie, T. Martens, D. Petrovic, A. Bogaerts and B. Sels
Plasma Sources Sci. Technol., 19, 034015 (2010)

223.

Modeling of the plasma chemistry and plasma-surface interactions in reactive plasmas.
A. Bogaerts, C. De Bie, M. Eckert, V. Georgieva, T. Martens, E. Neyts and S. Tinck
Pure Appl. Chem., 82, 1283-1299 (2010)

222.

The origin of Bohm diffusion, investigated by a comparison of different modelling methods.
E. Bultinck, S. Mahieu, D. Depla and A. Bogaerts
J. Physics D: Appl. Phys., 43, 292001 (2010)

221.

Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system: the effect of processing parameters.
M. Mao and A. Bogaerts
J. Physics D: Appl. Phys., 43, 315203 (2010)

220.

Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system: the effect of different gas mixtures.
M. Mao and A. Bogaerts
J. Physics D: Appl. Phys., 43, 205201 (2010)

219.

Characterization of nano-crystalline diamond films grown by continuous DC bias during plasma enhanced chemical vapour deposition.
V. Mortet, L. Zhang, M. Eckert, A. Soltani, J. D’Haen, O. Douhéret, M. Moreau, S. Osswald, E. Neyts, D. Troadec, P. Wagner, A. Bogaerts, G. Van Tendeloo and K. Haenen
Mater. Res. Soc. Symp. Proc., 1203, 1203-J05-03 (2010)

218.

Combined molecular dynamics – continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation.
W. Wendelen, A.A. Dzhurakhalov, F.M. Peeters and A. Bogaerts
J. Phys. Chem. C, 114, 5652-5660 (2010)

217.

Pulse shape influence on the atmospheric barrier discharge.
T. Martens, A. Bogaerts and J. van Dijk
Appl. Phys. Lett., 96, 131503 (2010)
Copyright (2010) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://pubs.aip.org/aip/apl/article-abstract/96/13/131503/892588/Pulse-shape-influence-on-the-atmospheric-barrier?redirectedFrom=PDF

216.

The influence of impurities on the performance of the dielectric barrier discharge.
T. Martens, A. Bogaerts, W.J.M. Brok and J. van Dijk
Appl. Phys. Lett., 96, 091501 (2010)
Copyright (2010) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://pubs.aip.org/aip/apl/article-abstract/96/9/091501/339052/The-influence-of-impurities-on-the-performance-of

215.

Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation.
W. Wendelen, D. Autrique and A. Bogaerts
Appl. Phys. Lett., 96, 051121 (2010)
Copyright (2010) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://pubs.aip.org/aip/apl/article-abstract/96/5/051121/986686/Space-charge-limited-electron-emission-from-a-Cu?redirectedFrom=fulltext

214.

Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry.
H. Lindner, D. Autrique, J. Pisonero, D. Günther and A. Bogaerts
J. Anal. At. Spectrom., 25, 295-304 (2010)

213.

Rotating cylindrical magnetron sputtering: simulation of the reactive process.
D. Depla, X.Y. Li, S. Mahieu, K. Van Aeken, W.P. Leroy, J. Haemers, R. De Gryse and A. Bogaerts
J. Appl. Physics, 107, 113307 (2010)
Copyright (2010) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/107/11/113307/147327/Rotating-cylindrical-magnetron-sputtering?redirectedFrom=PDF

212.

Molecular dynamics simulations of Cl+ etching on Si(100) surface.
F. Gou, E. Neyts, M. Eckert, S. Tinck and A. Bogaerts
J. Appl. Physics, 107, 113305 (2010)
Copyright (2010) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/107/11/113305/147119/Molecular-dynamics-simulations-of-Cl-etching-on-a?redirectedFrom=fulltext

211.

Compositional effects on the growth of Mg(M)O films.
M. Saraiva, V. Georgieva, S. Mahieu, K. Van Aeken, A. Bogaerts and D. Depla
J. Appl. Physics, 107, 034902 (2010)
Copyright (2010) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/107/3/034902/913805/Compositional-effects-on-the-growth-of-Mg-M-O?redirectedFrom=fulltext

210.

Bond switching regimes in nickel and nickel-carbon nanoclusters.
E. Neyts, Y. Shibuta and A. Bogaerts
Chem. Phys. Lett., 488, 202-205 (2010)

209.

Molecular dynamics simulation of oxide thin film growth: importance of the inter-atomic interaction potential.
V. Georgieva, I.T. Todorov and A. Bogaerts
Chem. Phys. Lett., 485, 315-319 (2010)

2009

208.

Numerical simulation of hydrocarbon plasmas for nanoparticle formation and the growth of nanostructured thin films.
E. Neyts, M. Eckert, M. Mao and A. Bogaerts
Plasma Phys. Control. Fusion, 51, 124034 (2009)

207.

Modeling PECVD growth of nanostructured carbon materials.
E. Neyts, A. Bogaerts and M.C.M. van de Sanden
High Temper. Mater. Process., 13, 347-360 (2009)

206.

Glow discharge optical spectroscopy and mass spectrometry.
R.E. Steiner, C.M. Barshick and A. Bogaerts
in: Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), John Wiley & Sons Ltd., Chichester, Great Britain (2009), 28 pp.

205.

Study of the nucleation and growth of TiO2 and ZnO thin films by means of molecular dynamics simulations.
N. Baguer, V. Georgieva, L. Calderin, I.T. Todorov, S. Van Gils and A. Bogaerts
J. Cryst. Growth, 311, 4034-4043 (2009)

204.

Modeling adatom surface processes during crystal growth: a new implementation of the Metropolis Monte Carlo algorithm.
M. Eckert, E. Neyts and A. Bogaerts
CrystEngComm., 11, 1597-1608 (2009)

203.

Theoretical characterization of an atmospheric pressure glow discharge used for analytical spectrometry.
T. Martens, D. Mihailova, J. van Dijk and A. Bogaerts
Anal. Chem., 81, 9096-9108 (2009)  (selected as one of the “highlights” of Analytical Chemistry)

202.

Optimized transport setup for high repetition rate pulse-separated analysis in laser ablation-inductively coupled plasma mass spectrometry.
H. Lindner, D. Autrique, C.C. Garcia, K. Niemax and A. Bogaerts
Anal. Chem., 81, 4241-4248 (2009)

201.

Particle-in-cell/Monte Carlo collisions model for the reactive sputter deposition of nitride layers.
E. Bultinck, S. Mahieu, D. Depla and A. Bogaerts
Plasma Process. Polym., 6, S784-S788 (2009)

200.

Computer modelling of plasmas and plasma-surface interactions.
A. Bogaerts, E. Bultinck, M. Eckert, V. Georgieva, M. Mao, E. Neyts and L. Schwaederlé
Plasma Process. Polym., 6, 295-307 (2009)

199.

Modeling of chemical processes in the low pressure capacitive radio frequency discharges in a mixture of Ar/C2H2.
D.A. Ariskin, I.V. Schweigert, A.L. Alexandrov, A. Bogaerts and F.M. Peeters
J. Appl. Physics, 105, 063305 (2009)
Copyright (2009) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/105/6/063305/401610/Modeling-of-chemical-processes-in-the-low-pressure?redirectedFrom=fulltext

198.

Fluid modelling of an atmospheric pressure dielectric barrier discharge in cylindrical geometry.
D. Petrović, T. Martens, J. van Dijk, W.J.M. Brok and A. Bogaerts
J. Physics D: Appl. Phys., 42, 205206 (2009)

197.

Computer modelling of magnetron discharges.
A. Bogaerts, E. Bultinck, I. Kolev, L. Schwaederlé, K. Van Aeken, G. Buyle and D. Depla
J. Physics D: Appl. Phys., 42, 194018 (2009)

196.

Plasma modelling and numerical simulation.  Editorial review.
J. van Dijk, G.M.W. Kroesen and A. Bogaerts
J. Physics D: Appl. Phys., 42, 190301 (2009)

195.

On the regime transitions during the formation of an atmospheric pressure dielectric barrier glow discharge.
T. Martens, W.J.M. Brok, J. van Dijk and A. Bogaerts
J. Physics D: Appl. Phys., 42, 122002 (2009)

194.

Investigation of etching and deposition processes of Cl2/O2/Ar inductively coupled plasmas on silicon by means of plasma-surface simulations and experiments.
S. Tinck, W. Boullart and A. Bogaerts
J. Physics D: Appl. Phys., 42, 095204 (2009)

193.

Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments.
V. Georgieva, M. Saraiva, N. Jenanathan, O.I. Lebelev, D. Depla and A. Bogaerts
J. Physics D: Appl. Phys., 42, 065107 (2009)

192.

Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films.
E. Bultinck and A. Bogaerts
New J. Phys., 11, 103010 (2009)

191.

Reactive sputter deposition of TiNx films, simulated with a particle-in-cell/Monte Carlo collisions model.
E. Bultinck, S. Mahieu, D. Depla and A. Bogaerts
New J. Phys., 11, 023039 (2009)

190.

Numerical study of the size-dependent melting mechanisms of nickel nanoclusters.
E.C. Neyts and A. Bogaerts
J. Phys. Chem. C, 113, 2771-2776 (2009)

189.

Formation of endohedral Ni@C60 and exohedral Ni-C60 metallofullerene complexes by simulated ion implantation.
E.C. Neyts and A. Bogaerts
Carbon, 47, 1028-1033 (2009)

188.

Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo fluid modelling investigation.
A. Bogaerts
Spectrochim. Acta B, 64, 1266-1279 (2009)

187.

Hybrid Monte Carlo - fluid model for studying the effects of nitrogen addition to argon glow discharges.
A. Bogaerts
Spectrochim. Acta B, 64, 124-140 (2009)

186.

Numerical study of the sputtering in a dc magnetron.
I. Kolev and A. Bogaerts
J. Vac. Sci. Technol. A, 27, 20-28 (2009)

2008

185.

Modeling of the magnetron discharge.
A. Bogaerts, I. Kolev and G. Buyle
in: Reactive Sputter Deposition, D. Depla and S. Mahieu (Eds.), Springer Verlag, Berlin-Heidelberg, Germany (2008), pp. 61-130

184.

Modeling of a dielectric barrier discharge used as a flowing chemical reactor.
D. Petrović, T. Martens, J. van Dijk, W.J.M. Brok and  A. Bogaerts
J. Physics: Conf. Series, 133, 012023 (2008)

183.

Computer simulation of argon-hydrogen Grimm-type glow discharges.
A. Bogaerts
J. Anal. At. Spectrom., 23, 1476-1486 (2008)  (selected for the inner front page of the journal, as “hot paper”)

182.

Study of atmospheric MOCVD of TiO2 thin films by means of computational fluid dynamics simulations.
N. Baguer, E. Neyts, S. Van Gils and A. Bogaerts
Chem. Vap. Deposition, 14, 339-346 (2008)

181.

Molecular dynamics simulations of the sticking and etch behaviour of various growth species of (ultra)nanocrystalline diamond films.
M. Eckert, E. Neyts and A. Bogaerts
Chem. Vap. Deposition, 14, 213-223 (2008)

180.

Atomic spectroscopy.
N.H. Bings, A. Bogaerts and J.A.C. Broekaert
Anal. Chem., 80, 4317-4347 (2008)  (invited review paper)

179.

Monte Carlo analysis of the electron thermalization process in the afterglow of a microsecond dc pulsed glow discharge.
A. Martín, N. Bordel, R. Pereiro and A. Bogaerts
Spectrochim. Acta B, 63, 1274-1282 (2008)

178.

Double pulse laser ablation and laser induced breakdown spectroscopy: a model investigation.
A. Bogaerts, Z. Chen and D. Autrique
Spectrochim. Acta B, 63, 746-754 (2008)

177.

Design analysis of a laser ablation cell for inductively coupled plasma mass spectrometry by numerical simulation.
D. Autrique, A. Bogaerts, H. Lindner, C.C. Garcia and K. Niemax
Spectrochim. Acta B, 63, 257-270 (2008)

176.

The dominant role of impurities in the composition of high pressure noble gas plasmas.
T. Martens, A. Bogaerts, W.J.M. Brok and J. van Dijk
Appl. Phys. Lett., 92, 041504 (2008)
Copyright (2008) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://pubs.aip.org/aip/apl/article-abstract/92/4/041504/335160/The-dominant-role-of-impurities-in-the-composition?redirectedFrom=fulltext

175.

Calculation of gas heating in a dc sputter magnetron.
I. Kolev and A. Bogaerts
J. Appl. Phys., 104, 093301 (2008)
Copyright (2008) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/104/9/093301/388836/Calculation-of-gas-heating-in-a-dc-sputter?redirectedFrom=fulltext

174.

The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron.
E. Bultinck, I. Kolev, A. Bogaerts and D. Depla
J. Appl. Phys., 103, 013309 (2008)
Copyright (2008) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/103/1/013309/987489/The-importance-of-an-external-circuit-in-a?redirectedFrom=fulltext

173.

New pathways for nanoparticle formation in acetylene dusty plasmas: a modelling investigation and comparison with experiments.
M. Mao, J. Benedikt, A. Consoli and A. Bogaerts
J. Physics D: Appl. Phys., 41, 225201 (2008)

172.

The effect of magnetic field strength on the sheath region in a dc magnetron discharge.
E. Bultinck and A. Bogaerts
J. Physics D: Appl. Phys., 41, 202007 (2008)

171.

Simulation of an Ar/Cl2 inductively coupled plasma: study of the effect of bias, power and pressure and comparison with experiments.
S. Tinck, W. Boullart and A. Bogaerts
J. Physics D: Appl. Phys., 41, 065207 (2008)

170.

On the reaction behaviour of hydrocarbon species at diamond (100) and (111) surfaces: a molecular dynamics investigation.
M. Eckert, E. Neyts and A. Bogaerts
J. Physics D: Appl. Phys., 41, 032006 (2008)

2007

169.

Reaction mechanisms and thin a-C:H film growth from low energy hydrocarbon radicals.
E. Neyts, A. Bogaerts and M.C.M. van de Sanden
J. Physics: Conf. Series, 86, 012020 (2007)

168.

Computer simulations of a dielectric barrier discharge used for analytical spectrometry.
T. Martens, A. Bogaerts, W. Brok and J. van Dijk
Anal. Bioanal. Chem., 388, 1583-1594 (2007)

167.

Macroscale computer simulations to investigate the chemical vapor deposition of thin metal-oxide films.
E. Neyts, A. Bogaerts, M. De Meyer and S. Van Gils
Surface & Coatings Technol., 201, 8838-8841 (2007)

166.

Molecular dynamics simulations of the growth of thin a-C:H films under additional ion bombardment: influence of the growth species and the Ar+ ion kinetic energy.
E. Neyts, M. Eckert and A. Bogaerts
Chem. Vap. Deposition, 13, 312-318 (2007)

165.

Modeling of the synthesis and subsequent growth of nanoparticles in dusty plasmas.
K. De Bleecker and A. Bogaerts
High Temp. Mater. Proc., 11, 21-36 (2007)

164.

Laser-induced plasmas from the ablation of metallic targets: the problem of the onset temperature, and insights on the expansion dynamics.
D. Bleiner, A. Bogaerts, F. Belloni and V. Nassisi
J. Appl. Phys., 101, 083301 (2007)
Copyright (2007) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/101/8/083301/916175/Laser-induced-plasmas-from-the-ablation-of?redirectedFrom=fulltext

163.

Calculation of rate constants for asymmetric charge transfer, and their effect on relative sensitivity factors in glow discharge mass spectrometry.
A. Bogaerts, K.A. Temelkov, N.K. Vuchkov and R. Gijbels
Spectrochim. Acta B, 62, 325-336 (2007)

162.

Computer simulations of sample chambers for laser ablation-inductively coupled plasma spectrometry.
D. Bleiner and A. Bogaerts
Spectrochim. Acta B, 62, 155-168 (2007)

161.

Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma.
T. Martens, A. Bogaerts, W.J.M. Brok and J.J.A.M. van der Mullen
J. Anal. At. Spectrom., 22, 1033-1042 (2007)

160.

The afterglow mystery of pulsed glow discharges and the role of dissociative electron-ion recombination.
A. Bogaerts
J. Anal. At. Spectrom., 22, 502-512 (2007)

159.

Plasma diagnostics and numerical simulations: insight into the heart of analytical glow discharges.
A. Bogaerts
J. Anal. At. Spectrom., 22, 13-40 (2007)  (invited review paper)

2006

158.

Atomic spectroscopy.
N.H. Bings, A. Bogaerts and J.A.C. Broekaert
Anal. Chem., 78, 3917-3945 (2006)  (invited review paper)

157.

Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges.
K. De Bleecker, A. Bogaerts and W. Goedheer
New. J. Phys., 8, 178 (2006)

156.

The effect of hydrogen on the electronic and bonding properties of amorphous carbon.
J.T. Titantah, D. Lamoen, E. Neyts and A. Bogaerts
J. Phys. Cond. Matt., 18, 10803-10815 (2006)

155.

Reaction mechanisms of low-kinetic energy hydrocarbon radicals on typical hydrogenated amorphous carbon (a-C:H) sites: a molecular dynamics study.
E. Neyts, M. Tacq and A. Bogaerts
Diam. Rel. Materials, 15, 1663-1676 (2006)

154.

Monte Carlo method for simulations of adsorbed atom diffusion on a surface.
Y.H. Liu, E. Neyts and A. Bogaerts
Diam. Rel. Materials, 15, 1629-1635 (2006)

153.

Detailed numerical investigation of a DC sputter magnetron.
I. Kolev and A. Bogaerts
IEEE Trans. Plasma Sci., 34, 886-894 (2006)

152.

Multiplicity and contiguity of ablation mechanisms in laser-assisted analytical micro-sampling.
D. Bleiner and A. Bogaerts
Spectrochim. Acta B, 61, 421-432 (2006)

151.

Short-pulse laser absorption in very steep plasma density gradients.
H.-B. Cai, W. Yu, S.-P. Zhu, C.-Y. Zheng, L.-H. Cao, B. Li, Z.Y. Chen and A. Bogaerts
Phys. Plasmas, 13, 094504 (2006)
Copyright (2006) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Physics of Plasmas and may be found at: https://pubs.aip.org/aip/pop/article-abstract/13/9/094504/931507/Short-pulse-laser-absorption-in-very-steep-plasma?redirectedFrom=fulltext

150.

Simulation of disk- and band-like voids in dusty plasma.
Y.H. Liu, Z.Y. Chen, F. Huang, M.Y. Yu, L. Wang and A. Bogaerts
Phys. Plasmas, 13, 052110 (2006)
Copyright (2006) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Physics of Plasmas and may be found at: https://pubs.aip.org/aip/pop/article-abstract/13/5/052110/1032187/Simulation-of-disk-and-band-like-voids-in-dusty?redirectedFrom=fulltext

149.

Plasma characteristics of an Ar/CF4/N2 discharge in an asymmetrical dual frequency reactor: a numerical investigation by a PIC/MC model.
V. Georgieva and A. Bogaerts
Plasma Sources Sci. Technol., 15, 368-377 (2006)

148.

Influence of internal energy and impact angle on the sticking behaviour of reactive radicals in thin a-C:H film growth: a molecular dynamics study.
E. Neyts and A. Bogaerts
Phys. Chem. Chem. Phys., 8, 2066-2071 (2006)

147.

Densification of thin a-C:H films grown from low-kinetic energy hydrocarbon radicals under the influence of H and C particle fluxes: a molecular dynamics study.
E. Neyts, A. Bogaerts and M.C.M. van de Sanden
J. Physics D: Appl. Phys., 39, 1948-1953 (2006)

146.

Phase explosion in atmospheric pressure infrared laser ablation from water-rich targets.
Z. Chen, A. Bogaerts and A. Vertes
Appl. Phys. Lett., 89, 041503 (2006)
Copyright (2006) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://pubs.aip.org/aip/apl/article-abstract/89/4/041503/986478/Phase-explosion-in-atmospheric-pressure-infrared?redirectedFrom=fulltext

145.

Aromatic ring generation as a dust precursor in acetylene discharges.
K. De Bleecker, A. Bogaerts and W. Goedheer
Appl. Phys. Lett., 88, 151501 (2006)
Copyright (2006) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://pubs.aip.org/aip/apl/article-abstract/88/15/151501/907744/Aromatic-ring-generation-as-a-dust-precursor-in?redirectedFrom=fulltext

144.

Effect of hydrogen on the growth of thin hydrogenated amorphous carbon films from thermal energy radicals.
E. Neyts, A. Bogaerts and M.C.M. van de Sanden
Appl. Phys. Lett., 88, 141922 (2006)
Copyright (2006) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Applied Physics Letters and may be found at: https://pubs.aip.org/aip/apl/article-abstract/88/14/141922/327400/Effect-of-hydrogen-on-the-growth-of-thin?redirectedFrom=fulltext

143.

Computer simulations of laser ablation sample introduction for plasma-source elemental microanalysis.
D. Bleiner and A. Bogaerts
J. Anal. At. Spectrom., 21, 1161-1174 (2006)

142.

Role of laser-induced melting and vaporization of metals during ICP-MS and LIBS analysis, investigated by computer simulations and experiments.
D. Bleiner, Z. Chen, D. Autrique and A. Bogaerts
J. Anal. At. Spectrom., 21, 910-921 (2006)

141.

Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments.
A. Bogaerts, Z. Chen and D. Bleiner
J. Anal. At. Spectrom., 21, 384-395 (2006)

140.

Temporal and spatially resolved laser-scattering plasma diagnostics for the characterization of a ms-pulsed glow discharge.
G. Gamez, A. Bogaerts and G.M. Hieftje
J. Anal. At. Spectrom., 21, 350-359 (2006)

139.

Multiple void formation in plasmas containing multispecies charged grains.
Y.H. Liu, Z.Y. Chen, M.Y. Yu and A. Bogaerts
Phys. Rev. E, 74, 056401 (2006)

138.

Structure of multispecies charged particles in a quadratic trap.
Y.H. Liu, Z.Y. Chen, M.Y. Yu, L. Wang and A. Bogaerts
Phys. Rev. E, 73, 047402 (2006)

137.

Negative ion behavior in single- and dual-frequency plasma etching reactors: particle-in-cell/Monte Carlo collision study.
V. Georgieva and A. Bogaerts
Phys. Rev. E, 73, 036402 (2006)

136.

Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges.
K. De Bleecker, A. Bogaerts and W. Goedheer
Phys. Rev. E, 73, 026405 (2006)

135.

PIC-MCC numerical simulation of a DC planar magnetron.
I. Kolev and A. Bogaerts
Plasma Process. Polym., 3, 127-134 (2006)

134.

Computer simulations for processing plasmas.
A. Bogaerts, K. De Bleecker, V. Georgieva, I. Kolev, M. Madani and E. Neyts
Plasma Process. Polym., 3, 110-119 (2006)

133.

Effect of ambient pressure on laser ablation and plume expansion dynamics: a numerical simulation.
Z. Chen, D. Bleiner and A. Bogaerts
J. Appl. Phys., 99, 063304 (2006)
Copyright (2006) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/99/6/063304/293148/Effect-of-ambient-pressure-on-laser-ablation-and?redirectedFrom=fulltext

132.

Unraveling the deposition mechanism in a:C-H thin-film growth: a molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a:C-H surfaces.
E. Neyts, A. Bogaerts and M.C.M. van de Sanden
J. Appl. Phys., 99, 014902 (2006)
Copyright (2006) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/99/1/014902/922999/Unraveling-the-deposition-mechanism-in-a-C-H-thin?redirectedFrom=fulltext

2005

131.

Numerical modeling for a better understanding of gas discharge plasmas.
A. Bogaerts, K. De Bleecker, V. Georgieva, D. Herrebout, I. Kolev, M. Madani and E. Neyts
High Temper. Mater. Process., 9, 321-344 (2005)

130.

Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation.
A. Bogaerts and Z. Chen
Spectrochim. Acta B, 60, 1280-1307 (2005)

129.

Modelling of dusty plasmas: A+M data needs.
W.J. Goedheer and K. De Bleecker
in: Atomic and Molecular Data and their Applications, T. Kato, H. Funaba and D. Kato (Eds.), American Institute of Physics, Melville, New York, U.S.A. (2005), pp. 118-127

128.

Modeling of gas discharge plasmas: what can we learn from it ?
A. Bogaerts, K. De Bleecker, I. Kolev and M. Madani
Surface & Coatings Technol., 200, 62-67 (2005)

127.

Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons.
I. Kolev, A. Bogaerts and R. Gijbels
Phys. Rev. E, 72, 056402 (2005)

126.

Role of the thermophoretic force on the transport of nanoparticles in dusty silane plasmas.
K. De Bleecker, A. Bogaerts and W. Goedheer
Phys. Rev. E, 71, 066405 (2005)

125.

Study of the sputtered Cu atoms and Cu+ ions in a hollow cathode glow discharge using a hybrid model.
N. Baguer and A. Bogaerts
J. Appl. Phys., 98, 033303 (2005)
Copyright (2005) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/98/3/033303/182683/Study-of-the-sputtered-Cu-atoms-and-Cu-ions-in-a?redirectedFrom=fulltext

124.

Numerical simulation of dual frequency etching reactors: influence of the external process parameters on the plasma characteristics.
V. Georgieva and A. Bogaerts
J. Appl. Phys., 98, 023308 (2005)
Copyright (2005) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/98/2/023308/349910/Numerical-simulation-of-dual-frequency-etching?redirectedFrom=fulltext

123.

Particle-in-cell Monte Carlo modeling of Langmuir probes in an Ar plasma.
A. Cenian, A. Chernukho, A. Bogaerts, R. Gijbels and C. Leys
J. Appl. Phys., 97, 123310 (2005)
Copyright (2005) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/97/12/123310/892934/Particle-in-cell-Monte-Carlo-modeling-of-Langmuir?redirectedFrom=fulltext

122.

Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements.
N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels and N. Sadeghi
J. Appl. Phys., 97, 123305 (2005)
Copyright (2005) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/97/12/123305/893399/Study-of-the-Ar-metastable-atom-population-in-a?redirectedFrom=fulltext

121.

Laser ablation of Cu and plume expansion into 1 atm ambient gas.
Z. Chen and A. Bogaerts
J. Appl. Phys., 97, 063305 (2005)
Copyright (2005) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/97/6/063305/984443/Laser-ablation-of-Cu-and-plume-expansion-into-1atm?redirectedFrom=fulltext

120.

Hollow cathode discharges with a gas flow: numerical modelling for the effect on the sputtered atoms and the deposition flux.
A. Bogaerts, A. Okhrimovskyy, N. Baguer and R. Gijbels
Plasma Sources Sci. Technol., 14, 191-200 (2005)

119.

Molecular dynamics simulation of the impact behaviour of various hydrocarbon species on DLC.
E. Neyts, A. Bogaerts, R. Gijbels, J. Benedikt and M.C.M. van de Sanden
Nucl. Instr. Meth. Phys. Res. B, 228, 315-318 (2005)

2004

118.

Numerical models of the planar magnetron glow discharges.
I. Kolev and A. Bogaerts
Contrib. Plasma Phys., 44, 582-588 (2004)

117.

Molecular dynamics simulations for the growth of diamond-like carbon films from low kinetic energy species.
E. Neyts, A. Bogaerts, R. Gijbels, J. Benedikt and M.C.M. van de Sanden
Diam. Rel. Materials, 13, 1873-1881 (2004)

116.

Incorporating the gas flow in a numerical model of rf discharges in methane.
A. Okhrimovskyy, A. Bogaerts and R. Gijbels
J. Appl. Phys., 96, 3070-3076 (2004)
Copyright (2004) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/96/6/3070/908099/Incorporating-the-gas-flow-in-a-numerical-model-of?redirectedFrom=fulltext

115.

Calculation of cathode heating in analytical glow discharges.
A. Bogaerts and R. Gijbels
J. Anal. At. Spectrom., 19, 1206-1212 (2004)

114.

Nanosecond laser ablation of Cu: modeling of the expansion in He background gas, and comparison with expansion in vacuum.
A. Bogaerts and Z. Chen
J. Anal. At. Spectrom., 19, 1169-1176 (2004)

113.

Modeling of the target surface modification by reactive ion implantation during magnetron sputtering.
D. Depla, Z.Y. Chen, A. Bogaerts, V. Ignatova, R. De Gryse and R. Gijbels
J. Vac. Sci. Technol. A, 22, 1524-1529 (2004)

112.

Investigation of growth mechanisms of clusters in a silane discharge with the use of a fluid model.
K. De Bleecker, A. Bogaerts, W. Goedheer and R. Gijbels
IEEE Trans. Plasma Sci., 32, 691-698 (2004)

111.

Atomic spectroscopy.
N.H. Bings, A. Bogaerts and J.A.C. Broekaert
Anal. Chem., 76, 3313-3336 (2004)  (invited review paper)

110.

Computer simulations of crater profiles in glow discharge optical emission spectrometry: comparison with experiments and investigation of the underlying mechanisms.
A. Bogaerts, W. Verscharen and E. Steers
Spectrochim. Acta B, 59, 1403-1411 (2004)

109.

Fundamental studies on a planar-cathode direct current glow discharge.  Part II: numerical modeling and comparison with laser scattering experiments.
A. Bogaerts, R. Gijbels, G. Gomez and G.M. Hieftje
Spectrochim. Acta B, 59, 449-460 (2004)

108.

Fundamental studies on a planar-cathode direct current glow discharge.  Part I: characterization via laser scattering techniques.
G. Gamez, A. Bogaerts, F. Andrade and G.M. Hieftje
Spectrochim. Acta B, 59, 435-447 (2004)

107.

Modeling of the formation and transport of nanoparticles in silane plasmas.
K. De Bleecker, A. Bogaerts and W. Goedheer
Phys. Rev. E, 70, 056407 (2004)

106.

Terahertz radiation from oscillating electrons in laser-induced wake fields.
L.-H. Cao, W. Yu, H. Xu, C.-Y. Zheng, Z.-J. Liu, B. Li and A. Bogaerts
Phys. Rev. E, 70, 046408 (2004)

105.

Numerical investigation of particle formation mechanisms in silane discharges.
K. De Bleecker, A. Bogaerts, R. Gijbels and W. Goedheer
Phys. Rev. E, 69, 056409 (2004)

104.

Numerical investigation of ion-energy-distribution functions in single and dual frequency capacitively coupled plasma reactors.
V. Georgieva, A. Bogaerts and R. Gijbels
Phys. Rev. E, 69, 026406 (2004)

2003

103.

Glow discharges in emission and mass spectrometry.
N. Jakubowski, A. Bogaerts and V. Hoffmann
in: Atomic spectroscopy in elemental analysis, M. Cullen (Ed.), Blackwell, Sheffield, U.K. (2003)

102.

Laser ablation for analytical sampling: what can we learn from modeling?
A. Bogaerts, Z. Chen, R. Gijbels and A. Vertes
Spectrochim. Acta B, 58, 1867-1893 (2003)

101.

One-dimensional modelling of a capacitively coupled rf plasma in silane/helium, including small concentrations of O2 and N2.
K. De Bleecker, D. Herrebout, A. Bogaerts, R. Gijbels and P. Descamps
J. Physics D: Appl. Phys., 36, 1826-1833 (2003)

100.

Glow discharge modelling: from basic understanding towards applications.
A. Bogaerts, Z. Chen and R. Gijbels
Surf. Interface Anal., 35, 593-603 (2003)

99.

A one-dimensional fluid model for an acetylene RF discharge: a study of the plasma chemistry.
D. Herrebout, A. Bogaerts, R. Gijbels, W.J. Goedheer and A. Vanhunsel
IEEE Trans. Plasma Sci., 31, 659-664 (2003)

98.

Investigation of laser output power saturation in the He-Cu+ IR hollow cathode discharge laser by experiments and numerical modeling.
A. Bogaerts, R. Gijbels, M. Grozeva and N. Sabotinov
Physica Scripta, 105, 90-97 (2003)

97.

Glow discharge optical emission spectrometry: moving towards reliable thin film analysis - a short review.
J. Angeli, A. Bengtson, A. Bogaerts, V. Hoffmann, V.-D. Hodoroaba and E. Steers
J. Anal. At. Spectrom., 18, 670-679 (2003)

96.

Modeling of a millisecond pulsed glow discharge: investigation of the afterpeak.
A. Bogaerts, R. Gijbels and G.P. Jackson
J. Anal. At. Spectrom., 18, 533-548 (2003)

95.

Dynamic Monte Carlo simulation for reactive sputtering of aluminium.
Z.Y. Chen, A. Bogaerts, D. Depla and V. Ignatova
Nucl. Instr. Meth. Phys. Res. B, 207, 415-423 (2003)

94.

PIC-MC simulation of an RF capacitively coupled Ar/H2 discharge.
E. Neyts, M. Yan, A. Bogaerts and R. Gijbels
Nucl. Instr. Meth. Phys. Res. B, 202, 300-304 (2003)

93.

Effect of helium/argon gas ratio in a He-Ar-Cu+ IR hollow-cathode discharge laser: modeling study and comparison with experiments.
A. Bogaerts and M. Grozeva
Appl. Phys. B, 76, 299-306 (2003)

92.

Numerical study of Ar/CF4/N2 discharges in single- and dual-frequency capacitively coupled plasma reactors.
V. Georgieva, A. Bogaerts and R. Gijbels
J. Appl. Phys., 94, 3748-3756 (2003)
Copyright (2003) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/94/6/3748/292266/Numerical-study-of-Ar-CF4-N2-discharges-in-single?redirectedFrom=fulltext

91.

Role of fast Ar atoms, Ar+ ions, and metastable Ar atoms in a hollow cathode glow discharge: study by a hybrid model.
N. Baguer, A. Bogaerts and R. Gijbels
J. Appl. Phys., 94, 2212-2222 (2003)
Copyright (2003) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/94/4/2212/482717/Role-of-the-fast-Ar-atoms-Ar-ions-and-metastable?redirectedFrom=fulltext

90.

Particle-in cell/Monte Carlo simulation of a low-pressure capacitively coupled radio-frequency discharge: effect of adding H2 to an Ar discharge.
E. Neyts, M. Yan, A. Bogaerts and R. Gijbels
J. Appl. Phys., 93, 5025-5033 (2003)
Copyright (2003) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/93/9/5025/778438/Particle-in-cell-Monte-Carlo-simulations-of-a-low?redirectedFrom=fulltext

89.

Particle-in-cell/Monte Carlo simulation of a capacitively coupled radio frequency Ar/CF4 discharge: effect of gas composition.
V. Georgieva, A. Bogaerts and R. Gijbels
J. Appl. Phys., 93, 2369-2379 (2003)
Copyright (2003) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/93/5/2369/759689/Particle-in-cell-Monte-Carlo-simulation-of-a?redirectedFrom=fulltext

88.

Hollow cathode glow discharge in He: Monte Carlo - fluid model combined with a transport model for the metastable atoms.
N. Baguer, A. Bogaerts and R. Gijbels
J. Appl. Phys., 93, 47-55 (2003)
Copyright (2003) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/93/1/47/763124/Hollow-cathode-glow-discharge-in-He-Monte-Carlo?redirectedFrom=fulltext

87.

Numerical modelling of gas discharge plasmas for various applications.
A. Bogaerts and R. Gijbels
Vacuum, 69, 37-52 (2003)

86.

Analysis of nonconducting materials by dc glow discharge spectrometry.
A. Bogaerts, W. Schelles and R. Van Grieken
in: Glow Discharge Plasmas in Analytical Spectroscopy, R.K. Marcus and J.A.C. Broekaert (Eds.), John Wiley & Sons, Chichester, U.K. (2003), pp. 293-315

85.

Numerical modeling of analytical glow discharges.
A. Bogaerts and R. Gijbels
in: Glow Discharge Plasmas in Analytical Spectroscopy, R.K. Marcus and J.A.C. Broekaert (Eds.), John Wiley & Sons, Chichester, U.K. (2003), pp. 155-205

2002

84.

Modeling network for argon glow discharge plasmas with copper cathode.
A. Bogaerts and R. Gijbels
in: Advances in Plasma Physics Research, volume 3, F. Gerard (Ed.), Nova Science Publishers Inc., Hauppauge, New York, U.S.A. (2002), pp. 1-32

83.

Axial non-uniformity of longitudinal hollow-cathode discharges for laser applications: numerical modeling and comparison with experiments.
A. Bogaerts and M. Grozeva
Appl. Phys. B, 75, 731-738 (2002)

82.

Comment on “Integral cross sections for electron impact excitation of electronic states of N2”.
A. Cenian, A. Chernukho, A. Bogaerts and R. Gijbels
J. Phys. B: At. Mol. Opt. Phys., 35, 5163-5166 (2002)

81.

Calculation of the gas flow and its effect on the plasma characteristics for a modified Grimm-type glow discharge cell.
A. Bogaerts, A. Okhrimovskyy and R. Gijbels
J. Anal. At. Spectrom., 17, 1076-1082 (2002)

80.

Hydrogen addition to an argon glow discharge: a numerical simulation.
A. Bogaerts
J. Anal. At. Spectrom., 17, 768-779 (2002)

79.   

Hybrid modeling network for a helium-argon-copper hollow cathode discharge used for laser applications.
A. Bogaerts and R. Gijbels
J. Appl. Phys., 92, 6408-6422 (2002)
Copyright (2002) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/92/11/6408/472928/Hybrid-modeling-network-for-a-helium-argon-copper?redirectedFrom=fulltext

78.

Modeling of a capacitively coupled radio-frequency methane plasma: comparison between a one-dimensional and a two-dimensional fluid model.
D. Herrebout, A. Bogaerts, M. Yan, R. Gijbels, W. Goedheer and A. Vanhulsel
J. Appl. Phys., 92, 2290-2295 (2002)
Copyright (2002) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/92/5/2290/471620/Modeling-of-a-capacitively-coupled-radio-frequency?redirectedFrom=fulltext

77.

Comparison of a one-dimensional particle-in-cell – Monte Carlo model and a one-dimensional fluid model for a CH4/H2 capacitively coupled radio frequency discharge.
V. Ivanov, O. Proshina, T. Rakhimova, A. Rakhimov, D. Herrebout and A. Bogaerts
J. Appl. Phys., 91, 6296-6302 (2002)
Copyright (2002) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/91/10/6296/483582/Comparison-of-a-one-dimensional-particle-in-cell?redirectedFrom=fulltext

76.

Atomic spectroscopy.
N.H. Bings, A. Bogaerts and J.AC. Broekaert
Anal. Chem., 74, 2691-2712 (2002)  (invited review paper)

75.

Modeling of magnetron and glow discharges.
A. Bogaerts and I. Kolev
Le Vide: Science, Technique et Applications, no. 304, vol. 2/4, 296-307 (2002)

74.

The ion- and atom-induced secondary electron emission yield: numerical study for the effect of clean and dirty cathode surfaces.
A. Bogaerts and R. Gijbels
Plasma Sources Sci. Technol., 11, 27-36 (2002)

73.

Evolution of charged particle densities after laser-induced photodetachment in a strongly electronegative RF discharge.
M. Yan, A. Bogaerts and R. Gijbels
IEEE Trans. Plasma Sci. (Special Issue “Images in Plasma Science”), 30, 132-133 (2002)

72.

Can plasma spectrochemistry assist in improving the accuracy of chemical analysis?
F. Adams, A. Adriaens and A. Bogaerts
Anal. Chim. Acta, 456, 63-75 (2002)

71.

Hybrid Monte Carlo – fluid modeling network for an argon/hydrogen direct current glow discharge.
A. Bogaerts and R. Gijbels
Spectrochim. Acta B, 57, 1071-1099 (2002)

70.

Gas discharge plasmas and their applications.
A. Bogaerts, E. Neyts, R. Gijbels and J.J.A.M. van der Mullen
Spectrochim. Acta B, 57, 609-658 (2002)  (invited review paper)

69.

Hybrid model for a cylindrical hollow cathode glow discharge and comparison with experiments.
N. Baguer, A. Bogaerts and R. Gijbels
Spectrochim. Acta B, 57, 311-326 (2002)

68.

Comparison of modeling calculations with experimental results for rf glow discharge optical emission spectrometry.
A. Bogaerts, L. Wilken, V. Hoffmann, R. Gijbels and K. Wetzig
Spectrochim. Acta B, 57, 109-119 (2002)

67.

Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo – fluid model.
A. Bogaerts and R. Gijbels
Phys. Rev. E, 65, 056402 (2002)

66.

Electron anisotropic scattering in gases: a formula for Monte Carlo simulations.
A. Okhrimovskyy, A. Bogaerts and R. Gijbels
Phys. Rev. E, 65, 37402 (2002)

65.

Local and fast relaxation phenomena after laser-induced photodetachment in a strongly electronegative rf discharge.
M. Yan, A. Bogaerts, R. Gijbels and W.J. Goedheer
Phys. Rev. E, 65, 16408 (2002)

2001

64.

One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers.
D. Herrebout, A. Bogaerts, M. Yan, R. Gijbels, W.J. Goedheer and E. Dekempeneer
J. Appl. Phys., 90, 570-579 (2001)
Copyright (2001) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/90/2/570/482680/One-dimensional-fluid-model-for-an-rf-methane?redirectedFrom=fulltext

63.  

Comparison of modeling calculations with experimental results for direct current glow discharge optical emission spectrometry.
A. Bogaerts, L. Wilken, V. Hoffmann, R. Gijbels and K. Wetzig
Spectrochim. Acta B, 56, 551-564 (2001)

62.   

Kinetic modeling of relaxation phenomena after photodetachment in a rf electronegative SiH4 discharge.
M. Yan, A. Bogaerts, R. Gijbels and W.J. Goedheer
Phys. Rev. E, 63, 026405-1/9 (2001)

61.

Interactions between DC plasma and HF fields.
A. Cenian, A. Chernukho, C. Leys and A. Bogaerts
in: Proceedings XIII Int. Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference (Florence, Italy; 18-22 September 2000)”, vol. 4184, 2001, pp. 389-392

60.

Improved hybrid Monte Carlo – fluid model for the electrical characteristics in an analytical radio-frequency glow discharge in argon.
A. Bogaerts, R. Gijbels and W.J. Goedheer
J. Anal. At. Spectrom., 16, 750-755 (2001)

59.

Modeling of a microsecond pulsed glow discharge: behavior of the argon excited levels and of the sputtered copper atoms and ions.
A. Bogaerts and R. Gijbels
J. Anal. At. Spectrom., 16, 239-249 (2001)

2000

58.

Modeling network for argon glow discharges: the output cannot be better than the input.
A. Bogaerts and R. Gijbels
in: Atomic and Molecular Data and their Applications, K.A. Berrington and K.L. Bell (Eds.), American Institute of Physics, Melville, New York, U.S.A. (2000), pp. 49-66

57.

Electron energy distribution function in capacitively coupled RF discharges: difference between electropositive Ar and electronegative SiH4 discharges.
M. Yan, A. Bogaerts, W.J. Goedheer and R. Gijbels
Plasma Sources Sci. Technol., 9, 583-591 (2000)

56.   

Calculation of gas heating in direct current argon glow discharges.
A. Bogaerts, R. Gijbels and V.V. Serikov
J. Appl. Phys., 87, 8334-8344 (2000)
Copyright (2000) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/87/12/8334/289122/Calculation-of-gas-heating-in-direct-current-argon?redirectedFrom=fulltext

55.

Spatial behavior of energy relaxation of electrons in capacitively coupled discharges: comparison between Ar and SiH4.
M. Yan, A. Bogaerts, R. Gijbels and W.J. Goedheer
J. Appl. Phys., 87, 3628-3636 (2000)
Copyright (2000) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/87/8/3628/490640/Spatial-behavior-of-energy-relaxation-of-electrons?redirectedFrom=fulltext

54.

Modeling of radio-frequency and direct current glow discharges in argon.
A. Bogaerts and R. Gijbels
J. Tech. Phys. (Special Issue), 41, 183-202 (2000)

53.

Comparison of calculated and measured optical emission intensities in a direct current argon-copper glow discharge.
A. Bogaerts, Z. Donko, K. Kutasi, G. Bano, N. Pinhao and M. Pinheiro
Spectrochim. Acta B, 55, 1465-1479 (2000)

52.

Behavior of the sputtered copper atoms, ions and excited species in a radio-frequency and direct current glow discharge.
A. Bogaerts and R. Gijbels
Spectrochim. Acta B, 55, 279-297 (2000)

51.

Description of the argon-excited levels in a radio-frequency and direct current glow discharge.
A. Bogaerts and R. Gijbels
Spectrochim. Acta B, 55, 263-278 (2000)

50.

Similarities and differences between direct current and radio-frequency glow discharges: a mathematical simulation.
A. Bogaerts and R. Gijbels
J. Anal. At. Spectrom., 15, 1191-1201 (2000)

49.

Hybrid Monte Carlo – fluid model for a microsecond pulsed glow discharge.
A. Bogaerts and R. Gijbels
J. Anal. At. Spectrom., 15, 895-905 (2000)

48.

Effects of adding hydrogen to an argon glow discharge: overview of relevant processes and some qualitative explanations.
A. Bogaerts and R. Gijbels
J. Anal. At. Spectrom., 15, 441-449 (2000)

47.

Glow discharge mass spectrometry, methods.
A. Bogaerts
in: Encylopedia of Spectroscopy and Spectrometry, J.C. Lindon, G.E. Tranter and J.L. Holmes (Eds.), Academic Press, San Diego, U.S.A. (2000), pp. 669-676

1999

46.  

Investigations of the electron distribution functions in low pressure electron cyclotron resonance discharges.
I.D. Kaganovich, M. Misina, A. Bogaerts and R. Gijbels
in: Advanced Technologies Based on Wave and Beam Generated Plasmas, H. Schlüter and A. Shivarova (Eds.), NATO Science Series, Kluwer, Dordrecht, The Netherlands (1999), pp. 543-544

45.

Modelling of radio-frequency capacitively coupled plasma at intermediate pressures.
S. Berezhnoi, I.D. Kaganovich, A. Bogaerts and R. Gijbels
in: Advanced Technologies Based on Wave and Beam Generated Plasmas, H. Schlüter and A. Shivarova (Eds.), NATO Science Series, Kluwer, Dordrecht, The Netherlands (1999), pp. 525-526

44.

Monte Carlo model for the argon ions and fast argon atoms in a radio-frequency discharge.
A. Bogaerts and R. Gijbels
IEEE Trans. Plasma Sci., 27, 1406-1415 (1999)

43.

Semianalytical description of nonlocal secondary electrons in a radio frequency capacitively coupled plasma at intermediate pressures.
S.V. Berezhnoi, I.D. Kaganovich, M. Misina, A. Bogaerts and R. Gijbels
IEEE Trans. Plasma Sci., 27, 1339-1347 (1999)

42.

Comparison between a radio-frequency and direct current glow discharge in argon by a hybrid Monte Carlo – fluid model for electrons, argon ions and fast argon atoms.
A. Bogaerts, R. Gijbels and W.J. Goedheer
Spectrochim. Acta B, 54, 1335-1350 (1999)

41   .

Role of Ar2+ and Ar2+ ions in a direct current glow discharge: a numerical description.
A. Bogaerts and R. Gijbels
J. Appl. Phys., 86, 4124-4133 (1999)
Copyright (1999) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/86/8/4124/488254/Role-of-Ar2-and-Ar2-ions-in-a-direct-current-argon?redirectedFrom=fulltext

40.

Modeling of ionization of argon in an analytical capacitively coupled radio-frequency glow discharge.
A. Bogaerts, M. Yan, R. Gijbels and W.J. Goedheer
J. Appl. Phys., 86, 2990-3001 (1999)
Copyright (1999) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/86/6/2990/179947/Modeling-of-ionization-of-argon-in-an-analytical?redirectedFrom=fulltext

39.

The glow discharge: an exciting plasma !
A. Bogaerts
J. Anal. At. Spectrom., 14, 1375-1384 (1999)

38.

New developments and applications in GDMS.
A. Bogaerts and R. Gijbels
Fresenius’ J. Anal. Chem., 364, 367-375 (1999)

37.

Hybrid modeling of a capacitively coupled radio frequency glow discharge in argon: combined Monte Carlo and fluid model.
A. Bogaerts, R. Gijbels and W.J. Goedheer
Jpn. J. Appl. Phys., 38, 4404-4415 (1999)

36.

Comprehensive modelling network for dc glow discharges in argon.
A. Bogaerts
Plasma Sources Sci. Technol., 8, 210-229 (1999)

1998

35.

Modeling of argon direct current glow discharges and comparison with experiment: How good is the agreement ?
A. Bogaerts and R. Gijbels
J. Anal. At. Spectrom., 13, 945-953 (1998)

34.

Argon and copper optical emission spectra in a Grimm glow discharge source: mathematical simulations and comparison with experiment.
A. Bogaerts and R. Gijbels
J. Anal. At. Spectrom., 13, 721-726 (1998)

33.

Influence of sticking coefficients on the behavior of sputtered atoms in an argon glow discharge: modeling and comparison with experiment.
A. Bogaerts, J. Naylor, M. Hatcher, W.J. Jones and R. Mason
J. Vac. Sci. Technol. A, 16, 2400-2410 (1998)

32.

Comprehensive three-dimensional modeling network for a dc glow discharge plasma.
A. Bogaerts and R. Gijbels
Plasma Phys. Reports, 24, 573-583 (1998)

31.   

Collisional-radiative model for an argon glow discharge.
A. Bogaerts, R. Gijbels and J. Vlcek
J. Appl. Phys., 84, 121-136 (1998)
Copyright (1998) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/84/1/121/491954/Collisional-radiative-model-for-an-argon-glow?redirectedFrom=fulltext

30.

Collisional-radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge.
A. Bogaerts, R. Gijbels and R.J. Carman
Spectrochim. Acta B, 53, 1679-1703 (1998)

29.

Modeling of glow discharge optical emission spectrometry: calculation of the argon atomic optical emission spectrum.
A. Bogaerts, R. Gijbels and J. Vlcek
Spectrochim. Acta B, 53, 1517-1526 (1998)

28.

Comprehensive description of a Grimm-type glow discharge source used for optical emission spectrometry: a mathematical simulation.
A. Bogaerts and R. Gijbels
Spectrochim. Acta B, 53, 437-462 (1998)

27.

Fundamental aspects and applications of glow discharge spectrometric techniques.
A. Bogaerts and R. Gijbels
Spectrochim. Acta B, 53, 1-42 (1998)  (invited review paper)

1997

26.   

Modeling of glow discharges: what can we learn from it ?
A. Bogaerts and R. Gijbels
Anal. Chem. A-pages, 69, A719-A727 (1997)  (invited review paper)

25. 

Plasma models.
A. Bogaerts and R. Gijbels
in: Glow Discharge Optical Emission Spectrometry: Chapter 4.2, R. Payling, D.G. Jones and A. Bengtson (Eds.), John Wiley & Sons, New York, U.S.A. (1997), pp. 176-191

24.

Three-dimensional modeling of a direct current glow discharge in argon: is it better than one-dimensional modeling ?
A. Bogaerts and R. Gijbels
Fresenius’ Z. Anal. Chem., 359, 331-337 (1997)

23.

Recent trends in solid mass spectrometry: GDMS and other methods.
R. Gijbels and A. Bogaerts
Fresenius’ Z. Anal. Chem., 359, 326-330 (1997)

22.

Modeling of glow discharge sources with flat and pin cathodes and implications for mass spectrometric analysis.
A. Bogaerts and R. Gijbels
J. Am. Soc. Mass Spectrom., 8, 1021-1029 (1997)

21.

Computer simulation of an analytical direct current glow discharge in argon: influence of the cell dimensions on the plasma quantities.
A. Bogaerts and R. Gijbels
J. Anal. At. Spectrom., 12, 751-759 (1997)

20.

Modelling of glow discharge ion sources for mass spectrometry: potentials and limitations.
R. Gijbels and A. Bogaerts
Spectroscopy (Europe), 9, 8-14 (1997)  (invited review paper)

19.

Calculation of crater profiles on a flat cathode in a direct current glow discharge, and comparison with experiment.
A. Bogaerts and R. Gijbels
Spectrochim. Acta B, 52, 765-778 (1997)

18.

Comparison of argon and neon as discharge gases in a direct current glow discharge.
A. Bogaerts and R. Gijbels
Spectrochim. Acta B, 52, 553-566 (1997)

17.

Three-dimensional density profiles of argon metastable atoms in a direct-current glow discharge: experimental study and comparison with calculations.
A. Bogaerts, R.D. Guenard, B.W. Smith, J.D. Winefordner, W.W. Harrison and R. Gijbels
Spectrochim. Acta B, 52, 219-229 (1997)

16.

Three-dimensional density profiles of sputtered atoms and ions in a direct current glow discharge: experimental study and comparison with calculations.
A. Bogaerts, E. Wagner, B.W. Smith, J.D. Winefordner, D. Pollmann, W.W. Harrison and R. Gijbels
Spectrochim. Acta B, 52, 205-218 (1997)

1996

15.  

Recent trends in solids mass spectrometry, with special emphasis on glow discharge mass spectrometry.
R. Gijbels and A. Bogaerts
in: 7th National Symposium on Mass Spectrometry 1996, S. K. Aggarwal and H. C. Jain, Perfect Prints, Thane, India (1996), pp. 71-86

14.

Relative sensitivity factors in glow discharge mass spectrometry: the role of charge transfer ionization.
A. Bogaerts and R. Gijbels
J. Anal. Atom. Spectrom., 11, 841-847 (1996)

13.

Two-dimensional model of a direct current glow discharge: description of the argon metastable atoms, sputtered atoms and ions.
A. Bogaerts and R. Gijbels
Anal. Chem., 68, 2676-2685 (1996)

12.

Two-dimensional model of a direct current glow discharge: description of the electrons, argon ions and fast argon atoms.
A. Bogaerts, R. Gijbels and W.J. Goedheer
Anal. Chem., 68, 2296-2303 (1996)

11.

Mathematical description of a direct current glow discharge in argon.
A. Bogaerts and R. Gijbels
Fresenius' Z. Anal. Chem., 355, 853-857 (1996)

10.   

Role of sputtered Cu atoms and ions in a direct current glow discharge: combined fluid and Monte Carlo model.
A. Bogaerts and R. Gijbels
J. Appl. Phys., 79, 1279-1286 (1996)
Copyright (1996) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/79/3/1279/178277/Role-of-sputtered-Cu-atoms-and-ions-in-a-direct?redirectedFrom=PDF

1995

9.

Mass spectrometric analysis of inorganic solids: GDMS and other methods.
R. Gijbels, M. van Straaten and A. Bogaerts
in: Advances in Mass Spectrometry, volume 13, I. Cornides, G. Horvath and K. Vekey (Eds.), John Wiley & Sons, New York, U.S.A. (1995), pp. 241-256

8.

Mathematical modelling of an analytical dc glow discharge.
A. Bogaerts, M. van Straaten and R. Gijbels
in: Recent Advances in Plasma Source Mass Spectrometry, G. Holland (Ed.), BPC Wheatons Ltd., Exeter, U.K. (1995), pp. 82-90

7.

Modeling of metastable argon atoms in a direct-current glow discharge.
A. Bogaerts and R. Gijbels
Phys. Rev. A, 52, 3743-3751 (1995)

6.

The role of fast argon ions and atoms in the ionization of argon in a direct-current glow discharge: a mathematical simulation.
A. Bogaerts and R. Gijbels
J. Appl. Phys., 78, 6427-6431 (1995)
Copyright (1995) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/78/11/6427/493330/The-role-of-fast-argon-ions-and-atoms-in-the?redirectedFrom=fulltext

5.    

Hybrid Monte Carlo-fluid model of a direct current glow discharge.
A. Bogaerts, R. Gijbels and W.J. Goedheer
J. Appl. Phys., 78, 2233-2241 (1995)
Copyright (1995) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/78/4/2233/496169/Hybrid-Monte-Carlo-fluid-model-of-a-direct-current?redirectedFrom=fulltext

4.

Description of the thermalization process of the sputtered atoms in a glow discharge using a three-dimensional Monte Carlo method.
A. Bogaerts, M. van Straaten and R. Gijbels
J. Appl. Phys., 77, 1868-1874 (1995)
Copyright (1995) American Institute of Physics.  This article may be downloaded for personal use only.  Any other use requires prior permission of the author and the American Institute of Physics.  Following article appeared in Journal of Applied Physics and may be found at: https://pubs.aip.org/aip/jap/article-abstract/77/5/1868/177386/Description-of-the-thermalization-process-of-the?redirectedFrom=PDF

3.

Plasma diagnostics of an analytical Grimm-type glow discharge in argon and in neon: Langmuir probe and optical emission spectrometry measurements.
A. Bogaerts, A. Quentmeier, N. Jakubowski and R. Gijbels
Spectrochim. Acta B, 50, 1337-1349 (1995)

2.

Experimental determination of energy distribution of ions bombarding the cathode surface in a glow discharge.
M. van Straaten, A. Bogaerts and R. Gijbels
Spectrochim. Acta B, 50, 583-605 (1995)

1.

Monte Carlo simulation of an analytical glow discharge: motion of electrons, ions and fast neutrals in the cathode dark space.
A. Bogaerts, M. van Straaten and R. Gijbels
Spectrochim. Acta B, 50, 179-196 (1995)

Older relevant publications

B.   

Influence of axial and radial diffusion processes on the analytical performance of a glow discharge cell.
M. van Straaten, R. Gijbels and A. Vertes
Anal. Chem., 64, 1855-1863 (1992)

A.

Sample erosion studies and modeling in a glow discharge ionization cell.
M. van Straaten, A. Vertes and R. Gijbels
Spectrochim. Acta B, 46, 283-290 (1991)