Onderzoeksgroep

Toegepaste Elektrochemie & Katalyse (ELCAT)

Expertise

Mijn onderzoek handelt over het optimaliseren van (elektro)chemische reactoren om zo hun efficiëntie en productiviteit te verbeteren. In het bijzonder focus ik op het verbeteren van het massatransport in (elektro)chemische reactoren door het stromingsgedrag en de hydrodynamica te optimaliseren. Voor deze procesintensificatie wordt er zowel onderzoek gedaan naar computerberekeningen als experimentele karakterisatie. Via numerieke computational fluid dynamics (CFD) berekeningen wordt het verband tussen het reactorontwerp en de hydrodynamica ontrafeld en nieuwe inzichten bekomen via dimensieloze analyse. Via experimentele karakterisatie worden nieuwe en innovatieve reactorontwerpen geoptimaliseerd richting hoge selectiviteit en productiviteit. Door middel van een reeks (additieve) fabricagetechnieken (e.g. 3D printen, microfrezen) worden deze reactoren in-huis geconstrueerd en geoptimaliseerd voor de beoogde applicatie (e.g. 3D geprinte elektroden voor elektrochemie). Dit laat toe om knelpunten te identificeren en op te lossen door middel van nieuwe elektrode of reactorontwerpen. Wanneer immers het massatransport of stromingsgedrag niet wordt geoptimaliseerd, kan nooit het volledige potentieel van een katalysator worden benut. Enkel wanneer de kinetische activiteit kan gekoppeld worden aan een optimaal massatransport, kan een economisch rendabel procedé worden ontwikkeld. Daarnaast laat deze gecombineerde aanpak toe om theoretische inzichten bekomen via numerieke verbeteringen te toetsen aan de realiteit via experimentele testen.

Verbeteren van de hydrodynamica van doorstroombare redoxbatterijen via 3D-geprinte elektroden. 01/10/2020 - 30/09/2023

Abstract

De inspanningen om het aandeel hernieuwbare energie te vergroten brengen grote uitdagingen mee met betrekking tot fluctuerende elektriciteitsproductie. Europa verwacht tegen 2050 dat het aandeel hernieuwbare energie groter is dan 45%. Bijgevolg zijn oplossingen nodig om energie te kunnen opslaan. Eén van die oplossingen is het opslaan van overtollige elektriciteit met behulp van doorstroombare redoxbatterijen. In tegenstelling tot conventionele (lithium-ion) batterijen hangt de opslagcapaciteit van doorstroombare redoxbatterijen niet af van het elektrodeoppervlak. Dankzij het elektroliet doorheen de batterij te pompen, hangt de opslagcapaciteit enkel af van het volume van het elektroliet, dat opgeslagen kan worden in goedkope tanks. Om het vermogen van de doorstroombare redoxbatterijen te vergroten, worden zij typisch uitgerust met sponsachtige felt elektroden. De kost om het elektroliet te pompen door dergelijke wanordelijke 3D-elektroden is echter aanzienlijk. 3D-geprinte elektroden verlagen de benodigde pompkost met twee grootteordes omwille van hun geordende geometrie. Het doel van dit project is om de invloed van 3D-geprinte elektroden op de prestatie van doorstroombare redoxbatterijen te ontrafelen. Om dit doel te bereiken wordt de correlatie tussen het vermogen en de drukval onderzocht voor verschillende elektrodegeometrieën en in functie van de batterijstabiliteit.

Onderzoeker(s)

Onderzoeksgroep(en)

Ontrafelen van de invloed van 3D-geprinte elektroden op de prestatie van doorstroombare redoxbatterijen 01/07/2020 - 31/12/2021

Abstract

De inspanningen om het aandeel hernieuwbare energie te vergroten brengen grote uitdagingen mee met betrekking tot fluctuerende elektriciteitsproductie. Europa verwacht tegen 2050 dat het aandeel hernieuwbare energie groter is dan 45%. Bijgevolg zijn oplossingen nodig om energie te kunnen opslaan. Eén van die oplossingen is het opslaan van overtollige elektriciteit met behulp van doorstroombare redoxbatterijen. In tegenstelling tot conventionele (lithium-ion) batterijen hangt de opslagcapaciteit van doorstroombare redoxbatterijen niet af van het elektrodeoppervlak. Dankzij het elektroliet doorheen de batterij te pompen, hangt de opslagcapaciteit enkel af van het volume van het elektroliet, dat opgeslagen kan worden in goedkope tanks. Om het vermogen van de doorstroombare redoxbatterijen te vergroten, worden zij typisch uitgerust met sponsachtige felt elektroden. De kost om het elektroliet te pompen door dergelijke wanordelijke 3D-elektroden is echter aanzienlijk. 3D-geprinte elektroden verlagen de benodigde pompkost met twee grootteordes omwille van hun geordende geometrie. Het doel van dit project is om de invloed van 3D-geprinte elektroden op de prestatie van doorstroombare redoxbatterijen te ontrafelen. Om dit doel te bereiken wordt de correlatie tussen het vermogen en de drukval onderzocht voor verschillende elektrodegeometrieën en in functie van de batterijstabiliteit.

Onderzoeker(s)

Onderzoeksgroep(en)

Opschalen van de zero-gap CO2 elektrolyzer. 01/05/2020 - 30/04/2021

Abstract

In het licht van de klimaatopwarming, zijn we in 2018 gestart met het IOF-SBO STACkED project met als doel het meest optimale CO2 elektrolyzer design te bepalen. De resultaten direct bekomen uit dit project hebben in oktober 2019 geleid tot de start van een patent aanvraagproces in samenwerking met het patentbureau De Clercq & Partners om de bekomen CO2 elektrolyzer te beschermen. De huidige CO2 elektrolyzer is echter beperkt in omvang (labo-schaal) en bevindt zich dan ook op TRL 3 niveau. Bijgevolg willen we via dit POC Blue_App project de volgende stap nemen en de CO2 elektrolyzer opschalen naar industrieel relevante grootte om zo een TRL 5 niveau te bereiken. Het doel van dit POC Blue_App project is dan ook om de CO2 elektrolyzer te gaan opschalen van 5 watt tot 1-2 kilowatt. Daarnaast zal dit POC Blue_App project toelaten om de patentaanvraagprocedure te versterken en mogelijke bottlenecks die voort kunnen komen uit de patentaanvraagprocedure op te lossen, alsook de verschillende valorisatiemogelijkheden te onderzoeken, ofwel via het oprichten van een spin-off ofwel via de verkoop van licenties aan derde partijen.

Onderzoeker(s)

Onderzoeksgroep(en)

Elektrosynthese voor de duurzame productie van ethyleenoxide. 01/06/2019 - 31/05/2023

Abstract

BASF is wereldwijd de grootste multinational in de chemische sector en in België gevestigd in de Antwerpse haven. De vestiging omvat onder andere de grootste ethyleenoxide (EO) productieafdeling in Europa. Het huidige EO-productieproces verloopt via katalytische oxidatie. Hierbij verbrandt echter een substantieel deel van de voeding tot CO2. Gedreven door de ontwikkelingen op klimatologisch vlak en de te verwachten heffingen op broeikasgassen staan milieubelastende processen onder druk en wordt de omschakeling naar groenere processen gestimuleerd. Zo werd onder andere een actieplan van de EU in het leven geroepen om de opwarming van de aarde af te remmen en onder de 2°C grenswaarde te houden. Het plan stelt dat 40% afslanking van de broeikasgasuitstoot, 27% verhoging van de energie-efficiëntie en 27% verhoging van de groene stroom gerealiseerd moeten worden voor 2030. BASF volgt deze filosofie en werkt toe naar een CO2 vrije groei tegen 2030. Het bedrijf wil zich dan ook inzetten voor de ontwikkeling van een groen EO productieproces en is daarom samen met de ART onderzoeksgroep het engagement aangegaan voor de uitwerking van een Baekeland project. Een elektrosynthese methode biedt de mogelijk om een CO2 vrije productie van EO te realiseren. Elektrochemische processen verlopen doorgaans bij veel lagere temperaturen (< 100°C), waardoor verbrandingsreacties, en bijgevolg de CO2 uitstoot, volledig vermeden kan worden. De laatste decennia heeft de elektrochemische technologie grote stappen voorwaarts gemaakt onder impuls van nieuwe technieken en inzichten op vlak van materiaaltechnologie, oppervlakte-engineering, membraan-technologie en gasdiffusie-elektroden (GDE). Dergelijke innovaties zijn nog nooit eerder onderzocht binnen de context van elektrochemische EO-productie. Dit Baekeland project onderzoekt daarom of innovatieve katalysatoren in geoptimaliseerde reactiecondities en reactorgeometrie in combinatie met het gebruik van state-of-the-art gasdiffusie-elektroden en membranen het mogelijk maken om EO rendabel te produceren via elektrochemische oxidatie, met als doel om na te gaan of dit proces voldoende draagkrachtig is om op industriële schaal toe te passen als een valabel, groen alternatief voor de huidige thermokatalytische oxidatie van ethyleen.

Onderzoeker(s)

Onderzoeksgroep(en)

Mixer elektroden voor doorstroombare redox batterijen. 01/01/2019 - 31/12/2021

Abstract

Hernieuwbare energie bevat een aantal uitdagingen met betrekking tot de fluctuerende energieproductie. Het aandeel hernieuwbare energie wordt verwacht te stijgen tot meer dan 20%. Bijgevolg zijn nieuwe opslag strategieën nodig. Zo een strategie is het opslaan van elektriciteit met behulp van redox flow batterijen (RFB). In tegenstelling tot standaard batterijen is het elektroliet in RFB niet langer stationair. Hierdoor is de stroomdichtheid niet langer afhankelijk van de grootte van de batterij, maar wordt dit bepaald door het volume elektroliet. Wanneer het elektroliet door de batterij stroomt wordt de oxidatietoestand van de ionen (bv. vanadium) gewijzigd en wordt zo het elektroliet opgeladen of ontladen. Opdat dit proces zo efficiënt mogelijk verloopt is het belangrijk dat het massatransport van deze ionen naar de elektrode zo groot mogelijk is. Momenteel slaagt men hier enkel in door het tolereren van een hoge drukval wat nefast is voor de efficiëntie aangezien dit gepaard gaat met hoge pompkosten. Met mixer elektroden kan het massatransport wel gemaximaliseerd worden bij een minimale drukval. Het doel van dit project is dan ook dergelijke geometrieën in te zetten in RFB, waarbij we trachten de performantie van vandium RFB te maximaliseren in functie van de drukval. Hiervoor wordt de correlatie tussen geleverd vermogen en drukval bestudeerd in functie van de geometrie van de drie meest gebruikte elektrode mixers.

Onderzoeker(s)

Onderzoeksgroep(en)

Geavanceerde dragermaterialen voor elektrokatalyse 01/07/2017 - 31/12/2018

Abstract

Het laatste decennium is nanotechnologie voor elektrochemische katalyse extreem belangrijk geworden. Nanopartikels op zich vormen echter nog geen elektrode. Bijgevolg is steeds een afzetting op een elektrisch geleidende dragerstructuur noodzakelijk. Voor de fabricatie van elektrodes wordt momenteel de voorkeur gegeven aan vlakke dragerstructuren omdat deze het minste problemen geven m.b.t. de afzetting van de nanopartikels. Vlakke dragerstructuren zijn echter niet de beste geometrie om een elektrochemisch proces zo efficiënt mogelijk te laten verlopen. Tubulaire dragerstructuren daarentegen resulteren in een veel hogere oppervlakte-volume verhouding en vertonen snellere massatransport omwille van een optimalere stromingsverdeling. Een homogene spreiding bekomen van de nanopartikels in de poriën van niet-vlakke dragerstructuren is echter een complex gegeven. Bijgevolg is dit dan ook de volgende belangrijke te nemen stap. Het doel van dit project is om tubulaire dragerstructuren te ontwikkelen en ze uniform te coaten met elektrokatalytische nanopartikels.

Onderzoeker(s)

Onderzoeksgroep(en)

Geordende drie dimensionale electroden voor elektrokatalyse. 01/10/2016 - 30/09/2019

Abstract

lHet laatste decennium is het gebruik van nanotechnologie in de elektrochemische katalyse extreem populair geworden. Nanopartikels vormen echter nog geen elektroden. Afzetting van dergelijke partikels op een geleidende dragerstructuur is noodzakelijk. Vlakke dragerstructuren zijn momenteel de meest gebruikte geometrie omdat een vlakke geometrie gepaard gaat met de minste complicaties tijdens de depositie. Vlakke dragerstructuren zijn echter niet de meest optimale geometrie om het proces zo efficiënt mogelijk te laten verlopen. Driedimensionale (3D) dragerstructuren resulteren in een veel groter contactoppervlak en wanneer de geometrie geordend is, kan het massatransport en de stromingsverdeling geoptimaliseerd worden. Uniforme depositie van de nanopartikels in poriën van dergelijke niet-vlakke dragerstructuren is echter een complexe zaak omwille van het vertraagde massatransport in de poriën. Het afzetten van de nanopartikels in zijn gewenste vorm op 3D-dragerstructuren is dan ook geïdentificeerd als één van de volgende uitdagingen. Het doel van dit project is om geordende 3D-dragerstructuren te ontwikkelen en uniform te coaten met elektrokatalytische nanopartikels. Om dit doel te bereiken worden drie onderzoeksvragen onderzocht: (1) wat is de impact van de geometrie van de dragerstructuren op de uniformiteit van de depositie; (2) wat is de impact van de geometrie van de dragerstructuren op de efficiëntie van het elektrochemische proces; (3) wat is de impact van de positie van de elektrodes in de elektrochemische reactor.

Onderzoeker(s)

Onderzoeksgroep(en)