Research team

Toxicological Centre

Expertise

The Toxicological Center has built up in the last 20 years expertise related to analytical toxicology, forensic toxicology and environmental toxicology research field. More specifically, the expertise of Prof. A. Covaci has been related to the development and validation of analytical methods for the determination of a broad range of legacy and emerging organic contaminants in environmental (soil, sediment, dust, water), food (meat, fish, duplicate diets, milk) and human (blood, urine, hair, milk, tissues) samples. The principal aim of the research is to characterize the human exposure to various organic contaminants, with emphasis on indoor chemicals used in the consumer products employed daily. An important component is the assessment of potential toxic and adverse effects on humans resulting from such exposures. UA-TOX mainly focuses on several legacy (regulated) chemicals and on many classes of chemicals of emerging concerns. These include flame retardants, plasticizers, organochlorine and organobromine contaminants, bisphenol substitutes, pesticides, plastic additives, perfluorinated chemicals, but also pharmaceuticals and illicit drugs. Recent research activities include also untargeted and suspected screening of contaminants and their transformation products in human and environmental matrices. Since 2007, a research direction has been implemented which uses the analysis of wastewater to estimate the consumption of illicit drugs in cities. The Toxicological Center was one of the first research groups worldwide to implement this approach. The Toxicological Centre has recently set up methodological approaches to identify metabolites resulting from metabolisation of various (indoor) contaminants, but also new psychoactive substances by using human in vitro hepatic systems and LC-Q-TOF-MS. Since recently, metabolomics approaches are used to study and predict toxicity at cellular and organismal levels. At the analytical level, we are developing and optimizing workflows for the use of innovative metabolomics techniques, a reliable “confirmatory” or “diagnostic” analytical tool. Regarding toxicity studies, metabolomics projects are currently running to profile endogenous metabolites in (in vitro) hepatic and lung cells after exposure to toxicants. These experiments use MS-based metabolomics to elucidate toxicity mechanisms and pathways by identifying changes in cellular metabolites after exposure to toxicants. We are also employing target metabolomics through the specific analyses of biomarkers identified as relevant and specific for several types of health effects investigated within the current biomonitoring schemes (FLEHS and HBM4EU). The outcome of these experiments constitutes an additional pillar in the characterization of toxicity and exposure pathways of humans to chemicals and is crucial in establishing causal relationships with diseases. Together with the NatuRA group, the Toxicological Centre have recently established an experimental workflow Xeno-biome based on the LC-MS profiling to investigate biotransformation of bioactive food ingredients, pharmaceuticals, and toxicants by the gut microbiome in a gastro-intestinal-colon dialysis model. There are several high-end instruments present at the Toxicological Center, which include gas/liquid chromatographs coupled with mass spectrometers. Also quadrupole time-of-flight (Q-TOF) LC-MS, providing accurate mass measurements and MS/MS fragmentation, is available to support the above mentioned research directions

Unravelling Discoloration Mechanisms of Red Organic Pigments in Historical Art Works (RED-OPEN). 01/09/2021 - 31/08/2023

Abstract

An important issue encountered in the historical artworks is the fading of the original colors because of their strong light sensitivity, infamously leading to the discoloration of masterworks even within an artist's lifetime. This phenomenon is clearly evidenced in many paintings of 19th century European impressionist artists, such as van Gogh, in particular when Organic Red Pigments (ORP) have been used. The identification of these ORP in historical paintings remains a main challenge because of (1) the generally low concentration of the original pigment remaining after an aging period of ca. 100 years, (2) the scarcity of the paint micro samples available for analysis and the difficulty of obtaining additional ones and (3) the complexity of degradation behavior in the presence of oxygen, inorganic semiconductor pigments, binding media or varnish. The objective of the RED-OPEN project is to develop a multi-analytical approach based on mass spectrometry and spectroscopic techniques (A) to understand their discoloration mechanism and (B) to identify their breakdown products, even if the original molecules are no longer present in the artworks. The successful completion of RED-OPEN will have a major impact in the understanding of the original artwork's appearance and will provide comprehensive and detailed knowledge of the progressive changes throughout the painting's history. RED-OPEN will generate knowledge that will help conservators and conservation scientists to understand the causes of discoloration and formulate mitigating actions, preserving invaluable art for future generations and further proposing a digital reconstruction of its originally intended appearance.

Researcher(s)

Research team(s)

The Flemish exposome project: towards a comprehensive understanding of the life-course impact of dietary and environmental exposure on chronic low-grade gut inflammation (FLEXiGUT). 01/01/2021 - 31/12/2024

Abstract

The human exposome covers the totality of non-genetic exposures from conception throughout the life course. The Flemish exposome project, FLEXiGUT, combines the unique and complementary expertise in Flanders on dietary- and environment-related human biomarkers and biomonitoring, metabolomics, microbiome research and epidemiology to investigate the complex human exposome. This first large-scale Flemish Exposome study, will make use of biomonitoring and -omics based technologies on the available biological matrices of the Flemish Environage Birth and the Flemish Gut Microbiome cohorts. Associations between the acquired exposome metadata and chronic low-grade gut inflammation parameters and related diseases will be analysed using an integrated -omics approach. Our pioneering results will be validated through extension towards other international cohorts.

Researcher(s)

Research team(s)

Advanced research and training network in food quality, safety and security (FOODTRANET). Emerging chemicals in novel food commodities of animal origin. 01/12/2020 - 30/11/2022

Abstract

The specific project to be developed at UA aims at identifying emerging chemicals in novel food items for human and animal consumption (including edible insects, farmed fish, insect-fed fish, beehive products, and dairy products) using non-target and suspect screening based methods. Year 1. At first, suitable workflows for non-target and suspect screening methodologies based on liquid chromatography and high-resolution mass spectrometry (LC-HRMS) will be developed and harmonized for the identification of emerging chemicals present in the selected food. Such methods are currently in full development for human biological samples (urine and serum), and it is expected that they could serve as basis for the methods to be developed in food. In case of non-target methods, data analysis will be carried out without any a priori defined suspects, while for suspect screening methods a comprehensive list of emerging chemicals that are suspected/expected to be present in the analyzed samples (e.g. emerging pesticides, per- and polyfluoroalkyl substances, chlorinated paraffins, new plasticizers, etc.) will be set up. Then a selection of relevant samples (e.g. n=3 per food category) belonging to each novel food category will be purchased and analyzed. Year 2. Once the results of this first screening will be available, the dataset of samples belonging to the above-mentioned novel food categories will be widened (to n=10 per food category) and analyzed using the optimized methods. The performance of such analytical platforms and the generated results will then be critically assessed by chemometric data processing (combining multivariate analysis – like principal component analysis (PCA), random forest classification and support vector machines – with the application of univariate tests). The results of the statistical analysis will be combined with available information about food production, in order to establish differences and similarities in the patterns of emerging chemicals in novel food items. This information will be also transferred to the European Food Safety Authority (EFSA) to assess the necessity of including these emerging chemicals in regular monitoring schemes. The outcomes of this project will contribute to a preliminary food safety assessment of the potential of such matrices to be used as alternative food sources. Additionally, this specific project will offer insights on the most "promising" novel food categories present on the Belgian market to favor. In parallel, the EU ETN proposal FoodTraNet will be re-submitted and the coordinator of FoodTraNet, Dr. Nives Ogrinc has supplied a letter of support stating this engagement. As such, this proof of concept of contamination with emerging chemicals will be able to increase the chances of success of the resubmitted proposal and will be able to extent the investigation at broader European level.

Researcher(s)

Research team(s)

Silicone Wristbands as personal ExposurE monitor to Predict the internal exposure to emerging contaminants (SWEEP). 01/11/2020 - 31/10/2024

Abstract

Emerging contaminants (ECs) are a group of anthropogenic chemicals widely distributed in the environment. These chemicals are of growing concern due to their ubiquitous presence in the environment and potential hazardous effect to humans. Thus, it is critical to investigate the levels and patterns of exposure to ECs in the environment/human to provide a better assessment of the health risks. Since people are exposed to a mixture of complex chemicals in the environment, the assessment of personal exposure is the key to link the external and internal exposure and eventually the health effects. Silicone wristband represents the aggregate personal exposure of multiple exposure pathways, which would be ideal to predict the internal exposure. In this study, we will use the silicone wristbands as sampler to monitor the external exposure to ECs on the individual level, quantify the external and internal exposure concentration and then use a refined model to predict the internal exposure concentrations from the silicone wristband exposure data. We will also use suspect screening techniques to explore and identify new ECs using silicone wristbands to aid future exposure studies. This study aims to provide new insights into the exposure levels and patterns, gain better understanding for the correlation between external and internal exposure and refine and develop a method to predict the internal exposure dose thus simplify the exposure assessment in the general population.

Researcher(s)

Research team(s)

Novel mass-spectrometric approaches to investigate human exposure to emerging contaminants. 01/11/2020 - 31/10/2022

Abstract

Owing to the increasing plastic production, humans are exposed to a rising number of plastic additives. Many of these have been associated with neurotoxicity and adverse effects on the endocrine system. In the past, several new compounds linked to plastics have been identified, which are designated as "contaminants of emerging concern" (CECs). This project aims to identify new CECs derived from plastics. A novel, ultra performant analytical approach based on the hyphenation of liquid chromatography, ion mobility spectrometry and high-resolution mass spectrometry (LC-IM-HRMS) will be used for the creation of a database containing collision cross section (CCS) values of known and new CECs. Non-target and suspect screening approaches will be applied for the identification of new CECs in plastic and indoor dust samples. Using in vitro experiments in hepatic systems, Phase I and II metabolites of the new CECs will be identified. Screening of human urine samples will be conducted to confirm the metabolite's occurrence and identify the most relevant biotransformation products in vivo. Furthermore, a quantitative method using LC-MSMS will be developed and validated. Using this method, a proof-of-concept study on a set of 100 human urine samples will be conducted with the purpose to establish time-trends for these new CECs. The results obtained with this workflow will deepen the knowledge about human exposure to CECs and have an influential input on future biomonitoring programs.

Researcher(s)

Research team(s)

Testing and analysis of no more than 15 urine samples to detect the presence and concentration of EDCs including three parameters. 01/11/2020 - 30/04/2021

Abstract

This is a contract between the Endocrine Society and the University of Antwerp for the analysis of organophosphate flame retardants in urine samples. These results will be used to investigate the current contamination status of highly-ranked EU persons to these contaminants.

Researcher(s)

Research team(s)

Analysis of bisphenols and phosphate flame retardant metabolites in urine samples. 15/10/2020 - 30/09/2023

Abstract

This is a contract between the University of Antwerp and Hokkaido University for the analysis of organophosphate flame retardants in urine samples collected from the Japanese children. These results will be used to investigate associations with the children exposure to these contaminants.

Researcher(s)

Research team(s)

Analysis of organic contaminants in tissue samples. 01/10/2020 - 31/12/2021

Abstract

This is a service contract between the University of Antwerp and Griffiths University (Australia) for the analysis of organohalogenated contaminants, such as POPs, BFRs, and their metabolites in tissue samples from marine animals

Researcher(s)

Research team(s)

Pollution in the coastal wetlands of East Asia: cascading effects from littoral macroinvertebrates to migrating shorebirds (COAST-IMPACT). 01/08/2020 - 31/07/2023

Abstract

Globally, coastal ecosystems are undergoing rapid changes with respect to habitat degradation and pollution, which is especially true along the East Asian coastline due to rapid industrial and urban development. This has led to effects on coastal wetlands in terms of biodiversity and also on the quality of the stopover sites for migrating birds, such as shorebirds. Shorebird populations are declining at an alarming rate along the East Asian Australasian flyway (EAAF), the reasons for which are currently unknown. The role of pollution in these declines, which is unknown, is suspected to play a role. One way that pollutants might decrease survival during migration may be via immunomodulative properties that can affect the susceptibility to disease. Pollution has indeed been related to the outbreaks of disease and increase in disease as early as the 1960s in animals, including birds, and humans. In this study, we aim to study the impact of pollution on the biodiversity of littoral macroinvertebrates in coastal wetlands in East Asia, and the resulting combined impact of food availability, pollution and disease on migrating shorebirds using these wetlands as stop-over sites. The potential combined impact of pollution and resultant disease on the fitness and decline of shorebirds has been neglected until now. The proposed project will pioneer investigations into the combined impact of pollution and disease on the decline of migratory shorebirds along the EAAF, with a specific focus on pollution picked up along the Chinese coastline during migration. As there is no information on the impact of pollution (in combination with other stressors e.g. lack of food, disease and high energetic demands during migration) on migratory shorebirds along the EAAF, nor in other flyways (e.g. the East-Atlantic Flyway), the results of the project will bring scientific renewal and will inform conservation and risk management measures for important stop-over ecosystems

Researcher(s)

Research team(s)

From exposome to effect assessment of contaminants in human and animal models (EXPOSOME). 01/01/2020 - 31/12/2025

Abstract

We will develop a pioneering holistic framework based on innovative approaches to explore the human exposome in terms of exposure leading to adverse effects with a focus on endocrine-modulated neurological and metabolic disorders by: i. Identifying and characterizing the exposure sources of relevant chemicals in the context of the xposome framework; ii. developing and applying in silico, in vitro and in vivo human and animal models to investigate the absorption, distribution, metabolism, and excretion processes after exposure to chemicals; iii. setting up relevant clinical/epidemiological exposure-wide association studies to better understand the associations between exposure and neurological and metabolic disorders in longitudinal and (nested) casecontrol cohorts and including birth cohorts to understand transgenerational mechanisms; iv. using targeted and untargeted omics techniques (e.g. metabolomics and transcriptomics) in human and animal biological systems to aid data-driven discovery of causal factors for adverse health effects; v. linking exposure to mixtures by integrating exposome research with the adverse outcome pathway concept, a novel toxicological framework structuring the cascade of biological events from an initial molecular-level perturbation of a biological system to an adverse health outcome.

Researcher(s)

Research team(s)

Novel approaches for the estimation of the use of psychoactive pharmaceuticals and illicit drugs by wastewater analysis. 01/01/2020 - 31/12/2023

Abstract

The present project aims at developing innovative analytical and sampling approaches to estimate the (ab)use of illicit drugs and psychoactive pharmaceuticals, e.g. antidepressants, antipsychotics, benzodiazepines, and opioids in the general population. The analysis of human excretion products of substance use in wastewater has the unique properties to deliver such data. The overarching objective is to validate innovative active-passive sampling (APS) and detection strategies for biomarkers of illicit drugs and psychoactive pharmaceuticals to be used for the long-term monitoring of substance use in communities. The hypothesis to be tested is if APS will provide a more convenient sampling strategy compared to daily 24-h composite sampling. We will first develop analytical assays to measure biomarkers of psychoactive pharmaceuticals and drugs in wastewater. Then we will develop APS strategies for the target analytes in influent and effluent wastewater and will investigate the advantages/limitations of the APS strategies in real-life conditions. These new sampling strategies will be compared to the conventional 24-h composite sampling. We will plan sampling campaigns in 5 Slovene and 3 Belgian cities to: estimate for the first time community-wide psychoactive substance use in the Slovene and Belgian cities; evaluate chemical removal efficiencies for the wastewater treatment plants; investigate the utility of APS for improved identification of new psychoactive substances.

Researcher(s)

Research team(s)

Identification of novel biomarkers for the diagnosis of alcohol-associated liver diseases using metabolomics. 01/11/2019 - 31/10/2021

Abstract

Alcohol abuse is a major cause of liver disease worldwide and is the most common cause of acute-on-chronic liver failure. Despite the high prevalence of alcohol-associated liver disease (AALD), there is currently a lack of sensitive and specific early biomarkers, resulting in diagnosis at late (irreversible) stages of disease progression. The objective of this research project is the identification of (a panel of) small-molecule biomarkers to diagnose early stages of AALD through an advanced metabolomics workflow. Identification of mechanistic biomarkers for AALD will be performed in an in vitro experimental setup, using HepaRG® liver cells exposed to ethanol. A unique and ultra-performant analytical system (two dimensional liquid chromatography-ion mobility spectrometry-quadrupole time-of-flight mass spectrometry) will be used to identify possible biomarkers. An in vivo proof-of-concept study will be performed to extrapolate the applicability of the in vitro identified biomarkers to an in vivo situation. For this purpose, plasma and liver tissue samples of patients suffering from alcoholic fatty liver disease and steatohepatitis, will be investigated. Obtained data will help to improve the current knowledge on the mechanisms of action of alcohol-induced hepatoxicity and to provide new input for adverse outcome pathways. The results of this research project can be used as a lead for a clinical cohort-study to diagnose different stages of AALD.

Researcher(s)

Research team(s)

Exposure of premature neonates to bisphenol A and phthalates at the intensive care unit: accumulation in hair and long-term neurodevelopmentel and pulmonary toxicity. 01/11/2019 - 30/10/2021

Abstract

- Premature neonates are extremely vulnerable to external insults. - Bisphenol A and phthalates (DEHP) are plasticizers, used in soft plastics to increase their elasticity and extend their lifetime. - Leaching of plasticizers from indwelling medical devices used in the neonatal intensive care unit (NICU) might expose neonates to these chemicals at levels far exceeding tolerable daily dose recommendations. - Although awareness of these plasticizers is growing, they are still used in many medical devices in NICU. They are prohibited in the production of toys intended for children under 3 years of age, but legislation about their use in medical devices isn't strict or clear. - The studied plasticizers have toxic effects on neuronal and pulmonary cells, as proven in in vitro and in vivo (animal and human) models. - This project aims to explore the utility of plasticizer levels in an emerging non-invasive matrix (hair) as a diagnostic tool for cumulative and past exposure in the neonatal intensive care unit. - The possibility that this matrix can detect past exposure in this vulnerable population is a novel approach and is expected to provide fresh insights into the detection of past exposure to chemicals. - Based on these pathophysiological effects, we hypothesize that exposure to these plasticizers during the NICU stay contributes to the long-lasting impaired (neurocognitive and lung) development that is frequently observed in neonates after discharge from NICU.

Researcher(s)

Research team(s)

Europe-wide Sewage analysis to Monitor Emerging drug problems (EuSeME). 15/10/2019 - 14/10/2021

Abstract

Wastewater-based epidemiology (WBE) is now an established approach that is used to monitor the consumption of a selection of illicit drugs. However, WBE can also become a valuable source of information about new drug-related threats such as consumption of new psychoactive substances (NPS), licit and illicit opioids, as well as new trends in drug use (e.g., crack cocaine and cannabis). The goal of EuSeME is to further develop WBE as an early warning system to monitor emerging drug problems across Europe. First, qualitative and quantitative information about the consumption of NPS and opioids across Europe will be obtained through the development of analytical methods and retrospective analysis of wastewater and urine samples. Second, a thorough literature review will be carried out to identify additional relevant biomarkers of crack cocaine use. Analytical methods will be developed and integrated with existing ones to include these new biomarkers and monitor consumption of crack cocaine through WBE. Third, a thorough investigation of the sorption of cannabis biomarkers on suspended matter present in wastewater will be carried out. Outcomes will be used to establish a detailed protocol, providing a robust and harmonised approach to monitor consumption of cannabis through WBE. Finally, two broad sampling campaigns aiming at covering all of Europe will be carried out, focussing on the newly identified biomarkers and on conventional drugs. These campaigns will provide unique insights about emerging threats linked to the use of NPS, opioids, crack cocaine and cannabis, as well as an updated view about the situation of consumption of conventional illicit drugs in Europe. By implementing a practical application of drug-related research, EuSeME seeks to provide support to the activities of the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), national governments and stakeholders, law enforcement, as well as national focal points.

Researcher(s)

Research team(s)

Assessing human exposure to chlorinated paraffins in the indoor environment (HECPAR). 01/10/2019 - 30/09/2022

Abstract

Chlorinated paraffins (CPs) are a complex mixture of thousands of individual compounds which have been used as plasticizers, flame retardants and additives to various lubricants, adhesives and metal working fluids. Certain CPs are recognised as potential carcinogens and have exhibited toxic and bioaccumulative properties, culminating in restriction of their use due to their registration as Persistent Organic Pollutants (POPs) under the Stockholm Convention in 2017. As semi-volatile compounds, CPs may be released from consumer products and materials via volatilisation or leaching and tend to bind strongly to particulates, such as indoor dust. Inadvertent ingestion of contaminated dust is considered to be a major pathway of human exposure to CPs. This study aims to a) investigate the current human exposure risks posed by CPs in the indoor environments of Belgium and b) explore the transport and fate of such chemicals. Sensitive, reliable and robust methods for the quantitation of CPs will first be developed and validated using state-of-the-art techniques based on advanced mass spectrometry. The occurrence and distribution of CPs will then be assessed in dust from a range of indoor microenvironments to produce an estimate of human exposure via incidental dust ingestion for the Belgian population. Finally, the distribution of CPs in consumer goods and the migration of CPs to dust will be investigated to aid in mitigating harmful effects to human populations in the future.

Researcher(s)

Research team(s)

Presence of chlorinated paraffins in foodstuffs and intake of the Belgian population. 01/05/2019 - 30/04/2021

Abstract

Chlorinated paraffins (CPs), also known as polychlorinated n-alkanes with chlorine degree ranging from 30% to 70% by mass, are a complex mixture of thousands of isomers, diastereomers, and enantiomers.[3] They can be divided into short (SCCPs, C10-C13), medium (MCCPs, C14-17), and long chain CPs (LCCPs, > C17) according to their carbon chain length.[4] Among all CP groups, SCCPs have the highest toxic potential.[5] Although it has been suggested that ~ 85% of the human exposure to SCCPs occurs via the diet, concentration data of SCCPs in food is scarce. This is mainly caused by the complexity of CP mixtures, resulting in an unprecedented analytical challenge. In this project proposal, an adequate analytical method based on GC-MS/MS for the analysis of SCCPs in a wide variety of foods will be developed, validated and applied to evaluate the exposure of the Belgian population to SCCPs. First, a representative sampling plan will be developed by combining foods with expected contamination with SCCPs and foods that are highly consumed and thus have a significant impact on the dietary exposure. Next, the validated analytical method will be applied to the analysis of 220 food samples. Afterwards, the congener patterns of the highly contaminated samples (max 20 samples) will be further identified using High Resolution Mass Spectrometry. Since it has already been demonstrated that SCCPs can be released from hand blenders and household baking ovens, the impact of the use of food contact materials on the contamination of food and on the exposure will be further investigated. Finally, all data will be combined, and an exposure assessment will be conducted. Based on the results generated during the project, it can be evaluated whether control measures at (inter)national level need to be taken.

Researcher(s)

Research team(s)

The triboreactor as breakthrough remediation strategy for safeguarding human and environmental health (triboREMEDY). 01/03/2019 - 28/02/2023

Abstract

Environmental remediation for safeguarding human health is difficult. Effective processes enabling scalable operability are lacking. triboREMEDY aims at solving this impasse by providing the foundational steps towards the novel technology called "tribolysis" for safe, controlled, and efficient degradation of hazardous chemicals and effective inactivation of the pathogens. The scientific and technological breakthrough of triboREMEDY is based on the generation of nascent surfaces, high pressures, and shearing forces that will supply the required activation energy for dissociation of polychlorinated biphenyls (PCBs) and cell disintegration of pathogens. The centrepiece of triboREMEDY is the fully-controlled "triboreactor" in which mechanically (tribologically) induced chemical reactions take place as viable alternative to A) highly costly incineration or storage of hazardous waste, notably PCBs, and B) chemical, thermal inactivation or ultra-violet irradiation of pathogens in drinking water. The main project aim is to set scalable design rules for the "triboreactor" (proof of concept) based on the identification of PCB degradation products and pathogen inactivation pathways together with their relationships to operational parameters. In addition to this, the long-term vision beyond halogen elimination of PCBs and disinfection of drinking water avoiding chlorine treatments, will cover other toxic organic chemicals, application in chemical synthesis, catalysis free of critical raw materials, coating processes, requiring sensors for the monitoring of trace components, opening a wide new scientific and technological field. triboREMEDY will be driven by a multidisciplinary team of excellent researchers in mechanical engineering, chemistry, physics, biology, and medicine enabling the required unique breakthrough and interdisciplinary approach.

Researcher(s)

Research team(s)

Turning black into golden soldier fly larvae (Hermetia Illucens): added value creation by exploring its microbiota and metabolism (ETOBIOTA). 01/01/2019 - 31/12/2022

Abstract

Black Soldier Fly Larvae (BSFL) are larvae from the insect the black soldier fly. They are currently being reared on a global industrial scale as a feed ingredient. They can be reared on a wide range of side and waste streams from food industry and agriculture, being converters of these streams into valuable biomass. Given the struggle of our food system to sustainably meet the protein demands of the growing world population, BSFL rearing offers an innovative, bio-based alternative contributing to a circular economy. As insect production is a novel branch of livestock production, it is up to (academic) researchers to gather the same level of in-depth knowledge that is available for other farm animals on production safety and optimization. For example, the impact of the chemical and microbial composition of the feed on the zootechnical performance and on the microbial safety of BSFL is virtually unknown. Furthermore, preliminary research points towards high value applications for other industrial sectors, such as the pharma and waste treatment sector, that could generate more profit for the insect production sector. This project aims to generate more fundamental knowledge that could support the insect sector, legislation and the co-emerging food value chain to remove legislative and technical hurdles in rearing and valorisation. More specifically, we will explore the hardly investigated interaction between the BSFL, their substrate and their gut microbiota. Such interactions are expected to depend on the substrate and affect (i) the growth of the larvae, (ii) their microbial safety, and (iii) their chemical safety. The overall goal of this project is to define and characterize a set of microorganisms that can be used to manipulate the gut microbiota of BSFL in order to boost its performance in each of the three aforementioned domains and increase their economic value.

Researcher(s)

Research team(s)

Development of an active-passive sampling device for monitoring bioavailable pollutants in water. 01/10/2018 - 30/09/2021

Abstract

Water monitoring programs are largely used to assess the quality of aquatic ecosystems and verify compliance with environmental quality standards. However, the use of inadequate tools for the assessment of the impact of pollutants to aquatic organisms often results in inaccurate evaluations of ecological risk. Current approaches either rely on the total concentration of a pollutant, which has shown to be a poor predictor of ecological risk, or make large use of organisms for biological testing. This proposal aims to create and test a new generation of monitoring devices capable of measuring the fraction of pollutants present in the water that is relevant for ecological risk assessment, that is, the fraction of pollutants effectively available for assimilation in the organism and thus most likely to cause toxicity. An interdisciplinary approach combining biological testing and chemical speciation measurements will be used to investigate mechanistic links between the uptake of organisms and devices and test the performance of the envisaged technology. The automated device will be practical to transport and use on site, and will be equipped with chemical sensors suitable for measuring a wide range of pollutants (e.g. metals and organic compounds). This will significantly reduce costs related to field work operations and laboratory analyses and contribute to more robust and reliable water quality assessments.

Researcher(s)

Research team(s)

Characterization of occurrence, metabolism and contribution to human exposure of new chemicals present in the indoor environment. 01/10/2018 - 30/09/2021

Abstract

Chemicals are typically used in various products because of their beneficial properties, e.g. flame retardants, plasticizers, etc. However, most of them leach into the indoor environment and may provoke health disorders (e.g. endocrine disruption). With this proposal, we aim to enrich the fundamental knowledge related to new chemicals of concern by studying their occurrence in the indoor environment. Furthermore, we will characterize their biotransformation in humans by in vitro experiments with human liver subcellular fractions. We will then assess for the first time the resulting human exposure to these new chemical entities by investigating human biological samples (urine and handwipes) for the presence of these chemicals and their biotransformation products. Resultingly, we will propose a range of new biomarkers of exposure to be used in future biomonitoring studies. The detection of the newly identified chemicals (and/or their metabolites) in human biological samples will confirm occurred exposure and will assist in the prioritization for further investigation of other aspects, such as toxicity and possible health effects.

Researcher(s)

Research team(s)

Comprehensive Liquid Chromatography - Ion Mobility - Quadrupole-Time-of-Flight Mass Spectrometry for innovative metabolomics. 01/05/2018 - 30/04/2021

Abstract

The requested infrastructure (comprehensive liquid chromatograph-ion mobility-quadrupole time of flight mass spectrometer LCxLC-IM-QTOFMS) combines several state-of-the-art technologies into one platform which aims at bringing metabolomics research to the next level. As such, the infrastructure will deliver a combined five-dimension separation and detection technology, the first of its kind in Belgium. This instrument will be dedicated to metabolomics research, the science of endogenous metabolites in cells, tissues or organisms. The infrastructure will be able to optimally separate, detect and identify the very broad and complex chemical space of metabolites ranging from very polar (e.g. amino acids) to non-polar (e.g. lipids and hormones) at low nanomolar concentration range. Within UA, there is a growing need to combine the currently scattered efforts in metabolomics, an Emerging Frontline Research Domain in the UA research scene. Research ranges from drug discovery (mode of action and pharmacokinetic profiling), biomarker and toxicity studies to advanced data-analysis and systems biology approaches, but a dedicated metabolomics infrastructure to strengthen these studies is currently missing. As such, the investment in a core facility together with the gathering of nine research groups from five departments and two faculties would centralize the metabolomics research. This will position UA as a key player in the academic metabolomics research in the BeNeLux and worldwide.

Researcher(s)

Research team(s)

European Human Biomonitoring Iniative (HBM4EU). 01/01/2017 - 31/12/2021

Abstract

The European Human Biomonitoring Initiative (EHBMI) will establish and implement an ambitious European Joint Programme (EJP) and will provide policy makers with comparable and validated chemical exposure and health data at EU level. This will be done by integrating and building on previous and ongoing EU initiatives, national HBM programmes and studies (including cohorts, epidemiological studies and health surveys). The project will include harmonising and optimising the practices of national HBM programmes, including sample collection, quality assurance and data management; linking external to internal exposure in order to improve exposure models for risk assessment; developing, validating, and applying exposure and effect biomarkers to improve our understanding of the health risks associated with aggregate exposures; and identifying chemicals of concern through novel methods for the holistic analysis of HBM samples and improving the use of HBM data in assessing exposure to and the risks of chemical mixtures.

Researcher(s)

Research team(s)

Aanalysis of bisphenols in urine samples. 15/09/2019 - 29/02/2020

Abstract

This is a contract between the University of Antwerp and Hokkaido University for the analysis of organophosphate flame retardants in urine samples collected from the Japanese children. These results will be used to investigate associations with the children exposure to these contaminants.

Researcher(s)

Research team(s)

Community-wide assessment of the opioid burden through combined use of wastewater-based analytics and prescription drug monitoring data. 01/01/2019 - 31/10/2019

Abstract

In recent times, the use of opioids has escalated drastically and resulted in a crisis of epidemic proportions in North America. In Europe, the use of opioids has also increased, but in smaller proportions compared to North America. However, the extent to which opioids are (mis)used in Europe needs to be further explored. In this project, we will optimise and develop a highthroughput bioanalytical assay based on μSPE-LC-MS/MS capable of measuring a broad range of biomarkers of opioids use in the ng/L range in wastewater. We aim at obtaining near real-time, objective and complementary information on the use of opioids at high spatio-temporal resolution through a wastewater sampling campaign in different locations in Belgium. By generating highly relevant data on the consumption of opioids together with triangulation of this data with other existing datasets (e.g. Farmanet, Health Interview Survey,...), this project can aid in obtaining a better picture on the opioid use in Belgium which is of importance for policy makers in optimizing and evaluating prevention, treatment and harm-reduction strategies on the subject of pain management. Furthermore, by combining multiple datasets, information on the illegal use of opioids can be obtained. In a last step, the obtained data will be correlated with existing socioeconomicco-variates of the investigated communities to obtain a better insight on the relationship between socio-demographic features, and prevalence of use of opioids.

Researcher(s)

Research team(s)

Analysis of organic contaminants in tissue samples. 01/09/2018 - 31/12/2019

Abstract

This is a service contract between the University of antwerp and Griffiths Univbersity (Australia) for the analysis of organohalogenated contaminants, such as POPs, BFRs, and their metabolites in tissue samples from marine animals.

Researcher(s)

Research team(s)

CEC-MARK. 01/05/2018 - 30/04/2019

Abstract

Therefore, the project´s goal is the establishment of a set of specific and reliable biomarkers for measurement of CECs in the human body to assess the Belgium population exposure to mixtures of CECs based on the development of an innovative data-independent acquisition workflow. Accordingly, the project encompasses three main objectives: 1. The development of an innovative data-independent acquisition analytical workflow using advanced high-resolution mass spectrometry (HRMS) that will allow us to identify and prioritize the proper biomarkers of CECs and simplifying the data processing of the big data generated in the HRMS analyses. 2. To evaluate the extent of population exposure to mixtures of CECs in Belgium 3. To create a prioritized list of biomarkers to perform a reliable assessment of human exposure to mixtures of CECs.

Researcher(s)

Research team(s)

Support maintenance scientific equipment (Toxicology). 01/01/2018 - 31/12/2020

Abstract

This budget represents the yearly financial support from the University of Antwerp to our research group (Toxicological Center) for maintenance of the current instrumentations (headspace-GC-FID, GC-MS, GC-MSMS, LC-MSMS, LC-QTOFMS).

Researcher(s)

Research team(s)

Analysis of organic contaminants in tissue samples. 01/01/2018 - 31/12/2019

Abstract

This project is a collaboration between the University of Antwerp and Aarhus University (Denmark) and aims at measuring a range of legacy and emerging contaminants in biological tissues (organs, feathers, blood) from top predators.

Researcher(s)

Research team(s)

Analysis of PFR metabolites and bisphenols in urine samples. 15/10/2017 - 31/12/2018

Abstract

This is a contract between the University of Antwerp and Hokkaido University for the analysis of organophosphate flame retardants in urine samples collected from the Japanese children. These results will be used to investigate associations with the children exposure to these contaminants.

Researcher(s)

Research team(s)

The development of a metabolomics-based in vitro model for human hepatotoxicity 01/10/2017 - 30/06/2019

Abstract

In order to comply with the REACH-regulations (Registration Evaluation and Authorization of Chemicals) and to improve animal welfare, a human based in vitro model to investigate the hepatotoxicity of new chemical entities (NCEs) will be developed. The designed model is based on an innovative approach combining in vitro methodology with LC-MS metabolomics, a recent – omics domain that examines alterations in the endogenous metabolic profile of cells and organisms. The basis of our model is the hepatic human HepaRG® cell line, which closely resembles primary hepatocytes in terms of metabolic capacity and toxicological response. In a first phase, the model will be developed by exposing HepaRG cell cultures to well known hepatotoxic compounds, such as acetaminophen, valproic acid, fluoxetine, bosentan and aflatoxine B1; the intracellular profile of the endogenous metabolites will be investigated in an untargeted approach using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-QTOF-MS). Differences between the metabolic profiles of exposed and unexposed cells will be examined using bioinformatics tools in order to identify possible biomarkers characteristic for the multiple hepatotoxic modes of action (MoA). A database containing the reference compounds, their MoAs and the corresponding specific biomarkers will be used in a targeted approach to investigate the hepatotoxic MoA of NCEs, including pharmaceutical and/or industrial compounds.

Researcher(s)

Research team(s)

Chemical information mining of wastewater – From human exposure to environmental fate of emerging plasticizers and flame retardants 01/10/2017 - 12/10/2018

Abstract

We and our surrounding environment are constantly and increasingly exposed to synthetic chemicals, some of which have been shown to cause adverse biological or toxicological effects. Whilst the toxicity of some chemicals has been recognised, leading to their ban or regulated use, many substitutes, for which toxicity has not yet been fully assessed, are continuously being introduced. Consequently, monitoring human exposure and environmental fate of future/emerging contaminants is crucial. In this regard, wastewater plays a central role. Being, on the one hand, a pooled diluted sample of human urine, its composition can provide valuable information about the types and amounts of contaminants to which humans have been exposed to. On the other hand, it is recognised as one of the main sources of contaminants for the environment. This project aims at mining the chemical information contained in wastewater to obtain valuable geographical and temporal information about the exposure of humans to emerging contaminants, as well as to understand the environmental fate of these compounds. (i) Dedicated analytical methods will be developed to identify human metabolites of targeted emerging contaminants (plasticizers and flame retardants). (ii) Fate of these chemicals during wastewater treatment and their occurrence in wastewater of Flemish cities will be investigated. (iii) The gathered data will then be used to model community-wide exposure to these contaminants.

Researcher(s)

Research team(s)

Development of an active-passive sampling device for monitoring bioavailable pollutants in water. 01/10/2017 - 30/09/2018

Abstract

Concentrations of metals (e.g. Cd, Co, Cr, Cu, Ni, Pb Zn) and organic compounds (e.g. pesticides, flame retardants, pharmaceuticals) in aquatic ecosystems have been increasing in the last several decades as a result of urban spread, farming and industrial activities. Water monitoring programs are used to assess the quality of aquatic ecosystems and verify compliance with environmental quality standards. However, the use of inadequate tools for assessing pollutant concentrations in water often result in inaccurate evaluations of ecological risk. Current approaches used for water quality monitoring either measure the total concentration of a pollutant, which has shown to be a poor predictor of ecological risk, or make large use of organisms for biological testing. This proposal aims to create and test the technology required to develop a new generation of monitoring devices capable of measuring the fraction of pollutants present in the water that is relevant for ecological risk assessment, that is, the fraction of pollutants available for assimilation in the organism and that could potentially cause toxicity. This device will be practical to transport and use on site, and will be capable of autonomously measure a wide range of pollutants in water over long periods (from days to weeks). This will significantly reduce costs related to field work operations and laboratory analyses. The new technology will contribute to more robust and reliable water quality assessments.

Researcher(s)

Research team(s)

Characterization of occurrence, metabolism and contribution to human exposure of new chemical compounds present in the indoor environment. 01/10/2017 - 30/09/2018

Abstract

With this proposal, we aim to enrich the fundamental knowledge related to the new chemicals that are present in and may affect the indoor environment and consequently, the resulting human exposure. Chemicals are typically used in various products due to their beneficial properties, e.g. flame retardants, plasticizers, etc. However, most of them leach into the indoor environment and may provoke health disorders (e.g. endocrine disruption). We aim at identifying new chemicals of concern and study their occurrence in the indoor environment. Furthermore, we will characterize their biotransformation in humans by in vitro experiments with human liver subcellular fractions. We will then assess for the first time the resulting human exposure to these chemicals by investigating human biological samples (urine and blood) for the presence of these chemicals or their metabolites. Resultingly, we will propose a range of new biomarkers of exposure to be used in future (biomonitoring) studies. The detection of the newly identified chemicals (and/or their metabolites) in human biological samples will confirm that exposure has occurred and will alert on the imperious investigation of other aspects, such as toxicity and possible health effects.

Researcher(s)

Research team(s)

Novel electrochemical strategies for rapid, on-site multiscreening of illicit drugs (NARCOREADER). 01/05/2017 - 30/04/2019

Abstract

This project proposes to develop novel, inexpensive and portable multisensing devices adapted for the rapid on-site screening of a number of illicit drugs, in saliva, using recent advances in biomimetic materials coupled with electrochemistry.

Researcher(s)

Research team(s)

Pollutants and quality of silver eels from Mediterranean lagoons 01/05/2017 - 01/08/2017

Abstract

This project represents a formal service agreement between UA and on the other hand Univ. Perpignan. UA provides Univ. Perpignan research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Baltic Sea multilevel health impacts on key species of anthropogenic hazardous substances (BONUS BALTHEALTH). 01/04/2017 - 31/03/2020

Abstract

The Baltic ecosystem has undergone drastic changes over the past century due to a combination of anthropogenic and natural stressors. As is often the case, these changes have been most notably documented in charismatic wildlife species, including grey (Halichoerus grypus) and ringed seals (Pusa hispida), white-tailed eagles (Haliaeetus albicilla) and otters (Lutra lutra). The concept of BONUS BALTHEALTH is to provide integrated tools that allow for the assessment of the anthropogenic impacts on the ecological functioning and overall health of the Baltic ecosystem.

Researcher(s)

Research team(s)

Assessing population health from exposure to tobacco-specific carcinogens in Belgium using an innovative wastewater-based epidemiology approach (APOLLO). 01/04/2017 - 31/03/2019

Abstract

Tobacco smoking is the major cause of many chronic diseases, especially cancer. Knowledge on population exposure to tobacco smoking is essential to characterise the population health. National questionnaire surveys are currently the main source of population tobacco smoking. However, surveys have clear limitations due to its dependence on true self-reported usage and representativeness of the whole population. International comparison of surveyed data is also restricted due to different questionnaire formats among nations. An additional approach allowing more objective, efficient and near real-time assessment is necessary to address this important societal issue. Hence, the project APOLLO aims at developing and validating an innovative approach, wastewater-based epidemiology (WBE), for assessing population exposure to tobacco and its related carcinogens in the community. This involves analysis of raw wastewater from targeted communities for tobacco-specific biomarkers of exposure and cancer risk (the tobacco-specific nitrosamines (TSNAs) and their metabolites). The project comprises three main objectives: (1) development and validation of the WBE methodology; (2) evaluation of TSNA and metabolite levels in wastewater from different Belgian communities; (3) assessment of population health from exposure to tobacco-specific carcinogens in Belgium. The completion of the project will advance our knowledge on factual and near-real-time assessment of population exposure to these carcinogens from community to national and international levels using WBE as a standardised approach. This will be also a valuable tool to evaluate the efficacy of intervention actions against tobacco smoking and its related diseases in the population and specific community e.g. prisons, high schools. This project will promote my career prospect with enhanced interdisciplinary network and research mobility in Europe.

Researcher(s)

Research team(s)

Synergising international research Studies into the environmental fate and behaviour of toxic organic chemicals in the waste stream (INTERWASTE). 01/01/2017 - 31/12/2020

Abstract

The overall vision of INTERWASTE is to develop scientific understanding of issues related to environmental contamination with toxic organic chemicals (specifically flame retardants (FRs) and pharmaceutical and personal care products (PPCPs)) arising from their presence in the waste stream. Specific research objectives include: (a) exchange of knowledge of and best practice in methods for rapid and cost-effective identification of waste items containing restricted FRs; (b) developing scientific understanding of environmental contamination due to processing of waste items containing FRs; and (c) furthering understanding of the sources of PPCPs and FRs in the sewerage system.

Researcher(s)

Research team(s)

Waste water analysis report on the stimulant illicit drug markets in the EU (WATCH). 20/12/2016 - 19/06/2018

Abstract

The aims of this project are: 1) Conduct a wastewater monitoring exercise utilising a standardized protocol to describe the European illicit stimulant drug market through city level studies. Explore within countries differences in city level wastewater estimates to provide a better understanding of geographical patterns between and within European countries. 2) In a sample of selected cities conduct exploratory pilot studies with the collection of repeat waste water samples over a sufficiently long time period to assess temporal variations in consumption patterns and explore the implications of this for sampling and analysis for routine monitoring purpose. 3) Develop models of drug consumption that incorporate waste water analysis with other data sources (such as drug purity, epidemiology and demographical information) and assess the utility of these for commenting on the following questions: a) understanding better illicit stimulant drug consumption patterns at the community level, b) improving market size estimates c) coherence between estimates derived from different data sources, d) if changes in the illicit stimulant drug market resulting from changing availability, purity or police activities are possible to detect in wastewater analysis. 4) Conduct a review and pilot study in selected cities to assess the possible utility of waste water analysis to report on synthetic drug production

Researcher(s)

Research team(s)

Shine: Target And Non-Target Screening Of Chemicals In The Indoor Environment For Human Exposure Assessment. 15/05/2016 - 14/05/2019

Abstract

Objectives The following objectives have been set for this project: 1. To provide an overview of existing information on chemicals found indoors by carrying out a literature search. This review will be mainly based on the ECHA chemicals database, results of ongoing and previous LRI projects, and peer reviewed literature. 2. To carry out sampling and targeted analysis of emerging contaminants in dust and air of schools/daycare centers, homes and offices in various European countries. 3. To conduct non-target screening of the same samples collected under objective 2 to identify additional contaminants and combinations of chemicals. 4. To verify if existing exposure models can be used for the new chemicals found, and propose modifications to the models if needed. LRI Project Proposal Form Page 3 of 29 05/09/2015 5. To compare the measured and modelled data with biomonitoring data from the literature and other projects in which partners are participating.

Researcher(s)

Research team(s)

Centre of Expertise for Environment & Health (2016-2020). 01/01/2016 - 31/12/2020

Abstract

This project represents a formal research agreement between UA and on the other hand the Flemish Public Service. UA provides the Flemish Public Service research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Release of Bisphenol A and other endocrine-disruptive compounds from resin-based dental materials. 01/01/2016 - 31/12/2019

Abstract

Whereas amalgam was previously the standard dental restorative material for carious or traumatized teeth, dental composites are nowadays routinely used. Their application is even expected to increase since the WHO has started propagating a general phasing down of the use of amalgam. After a widespread clinical use of more than 25 years, dental composites appear an acceptable biological and functional substitute for amalgam. Yet, their biocompatibility is not yet fully characterized. As resin-based materials do not polymerize completely upon placement in the mouth, unpolymerized components may be released. Several eluates have been reported to exhibit different types of toxic effects, including endocrine-disruptive effects. Especially the release of the endocrine disruptor Bisphenol A (BPA) and related monomers from composites has raised concern. With this translational project, we will focus on the release of endocrine disruptive compounds, including BPA, from dental composites intending to bridge the gap between the current alarming toxicological literature and the seemingly favorable clinical observations. Unique to this project is the inter-university collaboration (KU Leuven – UA – VUB) and our integrated fundamental approach to investigating both chemical and biological activity of leached compounds. This will be investigated multidisciplinarily by in-vitro (analytical and bio-analytical) and in-vivo (biomonitoring) research, focusing on the long term.

Researcher(s)

Research team(s)

Bisphenol A alternatives: transfer from food contact materials, fate and human exposure. 01/01/2016 - 31/12/2019

Abstract

Bisphenol-A (BPA) is again at the forefront of research because its restriction has resulted in the use of numerous BPA analogues, e.g., other bisphenols (e.g. BPS and BPF). Whereas BPA is a recognized and rather well studied endocrine disrupting chemical, the other bisphenols have not received sufficient attention until now. Very recent studies have shown that some bisphenols have similar effects to those of BPA and stressed the urgent need to focus on the human health risk assessment of these chemicals. Since bisphenols are used without restriction in various food contact materials (FCMs), they could (easily) migrate in food. Using advanced mass spectrometric-based analytical techniques, we will first characterize the conditions in which bisphenols migrate from FCMs. Then, we will investigate the transformation products (TPs) of bisphenols formed under various stress conditions and the metabolites during in vitro metabolism. The estrogen-like potency of bisphenols and their metabolites/TPs will be tested in vitro. A significant contribution of the project will be the validation of multi-residue methods for the determination of bisphenols and their metabolites/TPs in human urine. These methods could be implemented in public health institutes and employed for monitoring the resulting human exposure. The completion of this unique and innovative project will greatly contribute to knowledge on human exposure and potential risks for public health to these BPA-related chemicals. This PhD project is part of a collaborative project with the Jozef Stefan Institute (Slovenia) funded by the FWO.

Researcher(s)

Research team(s)

Spreading excellence and widening participation in support of mass spectrometry and related techniques in Health, the Environment, and Food Analysis (MASSTWIN). 01/01/2016 - 31/12/2018

Abstract

The Department of Environmental Sciences at Jožef Stefan Institute has invested in new state-of-the-the-art mass spectrometry instrumentation and related laboratory infrastructure, an important and essential technique in modern science, but must now bolster its knowledge capacity and raise its research profile through taking practical steps in training and knowledge transfer and networking activities. The project has been designed to further stimulate cooperation and develop long-term strategic partnerships with five research institutes of excellence from five different European countries by establishing a community of practice in advanced mass spectrometric and related techniques applied to three transdisciplinary thematic pillars: Environment, Health and Food with focus on organic contaminants, element speciation, traditional and non-traditional stable isotopes, nanoparticles and food safety, traceability and authenticity. MASSTWIN has planned management visits, short-term and long-term exchanges of early-stage and senior researchers, thematic scientific workshops/meetings, common working groups and trainings, participation at conferences, trade fairs and open days. MASSTWIN has also been aligned with the objectives of the national Smart Specialization Strategy with an aim to increase science and technology capacity of the JSI-O2. Extensive dissemination/exploitation/communication activities will be aligned with the existing ERAChair ISOFOOD project for Isotope Techniques in Food Quality, Safety and Traceability, coordinated by JSI-O2. The MASSTWIN Users group will consist of representatives of higher education, the JSI Technology Transfer Centre, industry, governmental bodies, NGO's, and wider community through outreach activities and will therefore account for a positive impact not only on involved personnel and their knowledge, but also on institute level and create positive societal and economical impacts.

Researcher(s)

Research team(s)

Wastewater-based epidemiology: an innovative approach to assess real-time community-wide human lifestyle and health. 01/01/2016 - 30/09/2016

Abstract

Globally, public health agencies face methodological difficulties to efficiently assess the overall health of a community: many of the existing measures (e.g. surveys, hospital records) are very slow, often taking some years prior to reporting, resulting in delayed responses to any changes in the health/disease issues in the community. Thus, adding alternative means to the current measures is highly desirable. This postdoctoral project describes the development and validation of wastewater-based epidemiology (WBE) as an alternative approach to provide comprehensive data on community-wide human lifestyle, diet and health indices, with three key objectives: 1) developing analytical methods to measure specific human health-related biomarkers (e.g. sweeteners for diabetes, cotinine for tobacco use, isoprostanes for oxidative stress) in wastewater; 2) validating the WBE reliability on assessing population health using Belgian communities as a proof-of-concept and prerequisite for its meaningful application across countries; 3) performing an innovative Europe-wide WBE survey to synchronously evaluate community health and examine a model with relationships between the biomarker levels in wastewater and the community health-related indicators. The completion of this project will produce a substantial advancement for a real-time and objective monitoring of community health and will be of immense benefit to intervention designs and policy responses aiming to improve population health.

Researcher(s)

Research team(s)

Medical risks and developmental deficit 4 years after pediatric critical illness: role of exposure to plastic softeners released from indwelling medical devices (MeDIPlasticS). 01/12/2015 - 30/11/2019

Abstract

The proposed translational research is positioned late in the path from discovery to application, as it will build further on previous mechanistic and epidemiological research. The study rationale builds on evidence from epidemiological studies of much lower exposure to environmental toxicants, on our previous research documenting the legacy of pediatric critical illness and on (unpublished) proof-of-concept studies performed by our group. In a pilot study, concentrations of phthalate (DEHP) metabolites were quantified in plasma collected during PICU stay from children matched for age, type and severity of illness, who were also physically examined and tested for neurocognitive development at 4 year follow-up.

Researcher(s)

Research team(s)

Flame retardant analysis of food samples. 19/10/2015 - 31/03/2016

Abstract

The Toxicological Center will analyze 50 composite food samples collected by the Swedish Food Agency for a list of flame retardants. Toxicological Center takes responsibility for chemical analysis and QA and the SFA takes responsibility for the overall study design and delivery the food samples.

Researcher(s)

Research team(s)

The rise and threat of new psychoactive substances: integrated research to obtain evidence-based information on their properties and actual use. 01/10/2015 - 30/09/2018

Abstract

In recent years increasing amounts of new psychoactive substances (NPS) are detected on the drug market. These substances are chemically based on known illicit drugs (e.g. amphetamine, cannabis), have comparable effects, and are designed specifically to avoid drug regulations. The number of NPS detected keeps rising at a high rate with more than one new NPS reported every week in 2013 in the EU. In most cases, no information whatsoever is available regarding their metabolic aspects, effects, and toxicity, and this has resulted in a significant number of deaths worldwide. Furthermore, solid epidemiological data on the extent of use NPS use is lacking. This project aims at obtaining objective and timely information on the use of NPS in Belgium through a three-tiered approach. In first instance, an evaluation of the Belgian drug market will be made for the presence of NPS through a combination of amnesty bin analysis, purchase analysis and information obtained from the Belgian Early Warning System Drugs. The relevant NPS identified from this research will be subjected to in vitro metabolism experiments in order to gather scientific information on their metabolic fate and to identify biomarkers to target in biomonitoring studies. Biomonitoring will be performed on different population levels through wastewater analysis (communities), pooled urine analysis (specific populations) and individual serum/urine samples in order to obtain data on the extent of NPS use in Belgium.

Researcher(s)

Research team(s)

The development of a metabolomics-based in vitro model for human hepatotoxicity. 01/10/2015 - 30/09/2017

Abstract

In order to comply with the REACH-regulations (Registration Evaluation and Authorization of Chemicals) and to improve animal welfare, a human based in vitro model to investigate the hepatotoxicity of new chemical entities (NCEs) will be developed. The designed model is based on an innovative approach combining in vitro methodology with LC-MS metabolomics, a recent – omics domain that examines alterations in the endogenous metabolic profile of cells and organisms. The basis of our model is the hepatic human HepaRG® cell line, which closely resembles primary hepatocytes in terms of metabolic capacity and toxicological response. In a first phase, the model will be developed by exposing HepaRG cell cultures to well known hepatotoxic compounds, such as acetaminophen, valproic acid, fluoxetine, bosentan and aflatoxine B1; the intracellular profile of the endogenous metabolites will be investigated in an untargeted approach using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-QTOF-MS). Differences between the metabolic profiles of exposed and unexposed cells will be examined using bioinformatics tools in order to identify possible biomarkers characteristic for the multiple hepatotoxic modes of action (MoA). A database containing the reference compounds, their MoAs and the corresponding specific biomarkers will be used in a targeted approach to investigate the hepatotoxic MoA of NCEs, including pharmaceutical and/or industrial compounds.

Researcher(s)

Research team(s)

Analysis of breast milk samples. 27/05/2015 - 27/10/2015

Abstract

This project represents a formal research agreement between UA and on the other hand the client. UA provides the client research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Monitoring of the presence of brominated flame retardants in foodstuffs (FLAREFOOD) 01/03/2015 - 28/02/2017

Abstract

The primary objective of the project is to respond to the EU draft regulation on the monitoring of BFRs in food. Indeed, there is a lack of information on the occurrence data of BFRs in food which has hampered an accurate completion of intake assessment by EFSA. Firstly, two analytical methods will be developed and validated. Due to the diverse nature of various BFRs which need to be included, a GC-MS and a LC-MSMS method needs to be developed. These two methods will be based on the methods available in the experienced laboratories of the three partners. The new methods will be in-house validated. Transfer of the methods from the partner responsible with the development of the method to the other partners will be the next step. To become acquainted with the analytical capabilities, a workshop will be organised for the FASFC and Belgian field laboratories towards the end of the project. Food samples of diverse food groups (fish & other seafood, meat and meat products (including edible offal), animal and vegetable fats and oils, milk and dairy products, eggs and egg products, food for infants and small children and feed for food producing animals,…) will be sampled and combined to obtain in total 200 pooled samples. The samples will be analysed by the 3 partners according the requirements in the draft regulation. The results will be reported to EFSA.

Researcher(s)

Research team(s)

Long-term neurocognitive outcome of critically ill children after hospital discharge. 01/02/2015 - 31/01/2017

Abstract

This project represents a formal research agreement between UA and on the other hand the client. UA provides the client research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

ENVIROMICS, environment toxicology and technology for a durable world. Development and application of diagnostic instruments for industry and policy. 01/01/2015 - 31/12/2020

Abstract

Environmental toxicology (named ecotoxicology further on) is by name a multidisciplinary field involving a wide span of scientifical domains These domains cover areas as biology (and several sub-disciplines thereof), ecology, biochemistry, toxicology, molecular genetics, industrial and process chemistry etc On top of that it touches the sociological field in terms of human and environmental hazard and risk, and even economy by setting environmental standards, thereby directly influencing industrial processes Water treatment technology and risk assessment are both important answers and tools offered to problems put forward by ecotoxicology Both offer and raise questions and problems to be answered It is my believe that ecotoxicology, in its broadest sense, holds the mother key in the solution but has yet to fully gain it.

Researcher(s)

Research team(s)

ENVIROSTRESS - Environmental Stress in a Rapidly Changing World. 01/01/2015 - 31/12/2019

Abstract

This project represents a research contract awarded by the University of Antwerp. The supervisor provides the Antwerp University research mentioned in the title of the project under the conditions stipulated by the university.

Researcher(s)

Research team(s)

Development of an integrated strategy to characterize new lead compounds based on natural pro-drugs and their metabolites. 01/01/2015 - 31/12/2018

Abstract

A novel approach is presented in order to characterize new lead compounds from natural sources. Many natural products are pro-drugs that are metabolized and activated after oral administration. Nevertheless, this aspect is usually overlooked when searching for new therapeutic agents using classical approaches. In this project, the Nauclea pobeguinii tree, Herniaria hirsuta herb, Salix spp. (willow bark) and Filipendula ulmaria (meadowsweet) were selected as case studies for the characterization of new leads for antimalarial, anti-nephrolithiasis, and anti-inflammatory drugs. LC-MS (Liquid Chromatography – Mass Spectrometry) and NMR (Nuclear Magnetic Resonance Spectroscopy) platforms will be established for the fast metabolic profiling of plant extracts, prepared using comprehensive extraction methods to cover the full range of constituents. Secondly, a gastro-intestinal dialysis model (GIDM) simulating human GI metabolization, will be applied in order to activate potential pro-drugs. In addition, the dialysate containing the GI metabolites will be treated with microsomal S9 fractions to mimic liver metabolization. The resulting metabolized samples (before and after S9 treatment) will be profiled using the same LC-MS and NMR platforms, and compared with the original profiles. At the same time all extracts and metabolized extracts will be pharmacologically evaluated in a range of in vitro assays related to antimalarial, anti-nephrolithiasis and anti-inflammatory properties. Pharmacological and chromatographic/ phytochemical data will be analyzed in a metabolomics approach using multivariate data analysis in order to identify pharmacologically active constituents or metabolites. Targeted isolation and final pharmacological evaluation in vitro and in vivo will yield new lead compounds against malaria, nephrolithiasis and inflammatory diseases.

Researcher(s)

Research team(s)

Species @ Risk bird of prey samples. 15/12/2014 - 28/02/2015

Abstract

This project represents a formal research agreement between UA and on the other hand the client. UA provides the client research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Development of an integrated strategy to characterize new lead compounds based on natural pro-drugs and their metabolites. 01/10/2014 - 30/09/2017

Abstract

Many natural products are pro-drugs that are metabolized and activated after oral administration. Nevertheless this aspect is usually overlooked when searching for new lead compounds for therapeutic agents. In this project Filipendula ulmaria (meadowsweet) and Herniaria hirsuta have been selected as case studies for the characterization of new leads for anti-inflammatory drugs, and drugs for nephrolithiasis. An LC-MS and 1H-NMR platform will be used for the fast metabolomic profiling of plant extracts, prepared using comprehensive extraction methods to cover the full range of constituents. Secondly, the platform will be extended with a dialysis model simulating human gastro-intestinal (GI) metabolization, which will be applied to activate potential pro-drugs. In addition, the dialysate containing the GI metabolites will be treated with microsomal S9 fractions to mimic liver metabolization. The resulting metabolized samples (before and after S9 treatment) will be profiled in the same LC-MS and 1H-NMR platform, and compared with the original profiles. At the same time all extracts and metabolized extracts will be pharmacologically evaluated in a range of in vitro assays related to anti-inflammatory and anti-nephrolithiasis properties. Pharmacological and chromatographic / phytochemical data will be analyzed in a metabolomics approach using multivariate data analysis in order to characterize the pharmacologically active constituents and their metabolites as new lead compounds.

Researcher(s)

Research team(s)

Identification of new psychoactive substances and their metabolites through the analysis of pooled urine and wastewater. 01/10/2014 - 30/09/2015

Abstract

An increasing number of "New Psychoactive Substances" (NPS), claiming to contain only "legal" compounds, has recently appeared on the drug market. One of the major concerns depends on the lack of suitable analytical methods to identify and also to quantify the NPS entering the market. Even using sophisticated analytical techniques, these new drugs may be missed, since reference standards are not always available. In addition, NPS are often extensively metabolized in the body making almost undetectable the parent compounds, which highlights the importance of identifying their metabolites. In the current proposal, we will analyze several suspicious drug preparations by taking advantage of a high-resolution/accurate-mass (HR/AM) spectrometer quadrupole/time-of-flight (QTOF) in order to achieve structural elucidation of their main active components. Metabolites of the identified NPS will be then obtained by in vitro human liver preparations and further characterized by high-performance-liquid chromatography (HPLC) coupled to QTOF mass spectrometry. Next, we will perform an approach based on "sewage epidemiology" to estimate the consumption of NPS via the analysis of NPS and their metabolites in wastewater. For this purpose, we will develop and validate an analytical method based on solid-phase extraction (SPE) and HPLC coupled to tandem mass spectrometry (MS/MS) for accurate analysis of identified NPS and their metabolites in both wastewater and pooled urine samples.

Researcher(s)

Research team(s)

NEWRAPTOR - Exposure and effects of emerging contaminants in marine and terrestrial birds of prey. 01/09/2014 - 31/08/2018

Abstract

The proposed research will be divided in two main themes: 1) studying the exposure to emerging contaminants in Norwegian birds of prey and 2) assessing the potential effects of emerging contaminants, either alone via exposure experiments using a model bird species, a well as in combination with other pollutants occurring in free-living birds of prey.

Researcher(s)

Research team(s)

Migration Pathways to the environment –"Horizon Scanning" for FRs present in consumer goods and construction materials 15/07/2014 - 14/07/2015

Abstract

The proposed project is the extension of a PhD project within the larger framework of the INFLAME (Indoor Contamination with Flame Retardant Chemicals: Causes and Impacts) Marie Curie Initial Training Network (ITN) 2011-2014. The main research goal of the INFLAME is to understand how and to what extent flame retardant (FR) chemicals used in every-day consumer products enter humans and of the risk to health that such exposure presents. This project, entitled "Migration Pathways to the environment –"Horizon Scanning" for FRs present in consumer goods and construction materials", involved the investigation of the presence and characterization of flame retardants in a broad range of common consumer goods (electronics, furniture, carpets, curtains, plastic toys etc.) and building materials using analytical screening tools such as chromatography coupled to mass spectrometry (GC-MS and LC-TOFMS). The principal focus is on identifying and quantifying FRs hitherto either un- or rarely -detected. Any such "emerging" FRs detected in products are further investigated in specific matrices of the indoor environment, namely indoor air and dust. This work also provides analytical methods for "emerging" FRs, that will be further used by the INFLAME network. A special emphasis is given to direct analysis methods (such as direct probe) and to leaching tests.

Researcher(s)

Research team(s)

Chemical analysis of organic pollutants in serum and urine in the framework of the Centre for Environment and Health. 01/01/2014 - 31/12/2015

Abstract

This project represents a formal service agreement between UA and on the other hand VUB. UA provides VUB research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Expanding the detection window in forensic toxicology: hair and nail analysis. 01/01/2014 - 31/12/2014

Abstract

This project represents a research agreement between the UA and on the onther hand IWT. UA provides IWT research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Human exposure, in vitro metabolism and hepatotoxicity of organophosphate flame retardants. 01/10/2013 - 30/09/2015

Abstract

The main goals are: 1) to characterize most important exposure pathways for humans to OPFRs in the indoor environment and identify the compounds of concern; 2) to investigate the biotransformation of OPFRs using in vitro systems; 3) to develop innovative mass spectrometry-based metabolomic approaches for simultaneous detection of selected OPFRs and the endogenous metabolites (small molecules which are produced by the cell resulting from its normal functions) in exposed human hepatocytes; 4) to identify specific biomarkers (e.g. endogenous metabolites) impacted by exposure to OPFRs in hepatocytes. The project has been already initiated with the development of analytical methods necessary for the completion of the first goal, while procedures for the second goal are currently being developed. The completion of the proposed project will ensure a better understanding of the risk potential of OPFRs to human health provided by in vitro experiments.

Researcher(s)

Research team(s)

Evaluer les polluants et la qualité d'échantillons d'anguilles argentées de différentes lagunes méditerranéennes. 15/05/2013 - 15/09/2013

Abstract

This project represents a formal service agreement between UA and on the other hand Univ. Perpignan. UA provides Univ. Perpignan research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Interactions between natural stressors and pollutant exposure in nestling birds of prey: Feathers as a novel integrated measure of pollutant exposure, feeding ecology and stress. 01/01/2013 - 31/12/2016

Abstract

The main aim of this project is to study the impact of interactions between natural stressors and anthropogenic stress, caused by environmental contamination with OHCs, on the health of nestling birds of prey in (sub)Arctic regions. Birds of prey from (sub)Arctic regions have several characteristics that make them very useful to study OHC exposure in combination with natural stressors (see methodology).

Researcher(s)

Research team(s)

Advanced tools for exposure assessment and biomonitoring (A-TEAM). 01/01/2013 - 31/12/2016

Abstract

The main research goal of the project is to further understanding of how and to what extent consumer chemicals enter humans, and of how we can best monitor the presence of such chemicals in our indoor environment, diet and bodies. Our vision is that such enhanced understanding of the underpinning science will lead to more effective approaches to monitoring human exposure to chemicals within Europe, thereby improving assessment of risk associated both with recent and current-use consumer chemicals, as well as those under development, and leading ultimately to more sustainable approaches to the use of chemicals.

Researcher(s)

Research team(s)

Study of the possible migration risks of materials in contact with food for children under 3 years (ALTPOLYCARB). 01/01/2013 - 13/02/2016

Abstract

This project represents a formal research agreement between UA and on the other hand the Federal Public Service. UA provides the Federal Public Service research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Refinement and validation of the sewage epidemiology approach to estimate illicit drug use in the general population. 01/10/2012 - 30/09/2015

Abstract

In this post-doctoral mandate, I will validate and refine an innovative approach for estimating illicit drug use in the general population based on sewage analysis for human excretion products of these substances ("sewage epidemiology"). In the first objective of this proposal, I will validate the approach by simultaneously executing a drug consumption questionnaire (the gold standard at this moment) and sewage epidemiology for a well-defined population and time period. The data resulting from both approaches will be compared and can serve as a validation of sewage epidemiology. The second objective focuses on refining sewage epidemiology back-calculations, by addressing the issue of estimating the population contributing to a specific sewage system in an objective, dynamic and real-time way. Different approaches for estimating the real amount of people contributing to a specific sewage system will be based on the analysis of specific markers in sewage that result from human activity. The last objective deals with applying sewage epidemiology for new and innovative purposes, such as the exploratory investigation of the use of new and emerging substances and through the execution of uniformed Europe-wide monitoring studies that allow reliable international comparisons on the epidemiology of illicit drug use. It is expected that the successful completion of these objectives will have positive implications for international drug policy and public health.

Researcher(s)

Research team(s)

Exposure modelling and effect assessment of organic pollutants in predatory birds: Studying the interactions between exposure, climate variability and feeding ecology, using the white-tailed eagle (Haliaeetus albicilla) as model species. 01/10/2012 - 30/04/2013

Abstract

The main aim of the proposed research is to study exposure and effects of organic pollutants in predatory birds, using the white-tailed eagle (Haliaeetus albicilla; WTE) as a model species. The proposed research can be subdivided in several objectives. Firstly, I will study exposure through the development of physiologically based pharmacokinetic (PBPK) bioaccumulation models. Since a high amount of species-specific information is required to develop such a model, I have chosen the WTE as a model species. This species has been monitored for years through international collaborations and I have access to databases providing sufficient information for the first objective (see methodology). The second objective aims to study the effects from the physiological up to the population level. The last objective deals with the study of exposure to organic pollutants in the light of varying climate and feeding conditions over time.

Researcher(s)

Research team(s)

Role of dipeptidyl peptidase 4 (DPP4) in collagen metabolism and dipeptide homeostasis. 01/01/2012 - 31/12/2015

Abstract

This project aims to unravel the effects of DPP4 inhibition on collagen and collagen-derived dipeptide metabolism. We will develop and validate methods to quantify, in biological matrices, dipeptides resulting from DPP4 mediated cleavage. Next, the effects of DPP4 inhibition on the collagen metabolism and the dipeptide profile will be studied in vitro in fibroblast and osteoblast cultures. The in vivo relevance of our findings will be evaluated by studying the effects of long-term DPP4 inhibition in vivo in a rat model of type 2 diabetes. The focus will be on cardiac and renal collagen metabolism and dipeptide levels in plasma, urine and tissues.

Researcher(s)

Research team(s)

Investigations on the active metabolites of promising natural products. 01/01/2012 - 31/12/2015

Abstract

This project comprises the identification of the active metabolites of selected natural products with a proven biological activity. The focus will be on Cranberry (Vaccinium macrocarpon) which is used against urinary tract infections, and the Congolese medicinal plant Nauclea pobeguinii, which showed promising activity against malaria in vitro as well as in vivo. For both plants, in vivo activity may be attributed to the formation of biologically active metabolites. The identification of these active metabolites involves the integrated application of in vitro and in vivo test systems with up-to-date technologies such as LC-MS (Liquid Chromatography – Mass Spectrometry) and LC-NMR (Liquid Chromatography – Nuclear Magnetic Resonance spectroscopy) combined with modern information technology such as MVA (multivariate data analysis) to process large amounts of data. These investigations on metabolites of selected natural products with a proven biological activity represent a challenging research field, whereas the successful completion of the submitted proposal might also lead to the characterisation of potential lead compounds for new drugs.

Researcher(s)

Research team(s)

Physiologically based pharmacokinetic models for the accumulation and effects of microcontaminants in harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena). 01/10/2011 - 30/09/2013

Abstract

Aims: Development of a physiologically based pharmacokinetic model for long-term uptake and accumulation of microcontaminants by seals. Model evaluation by comparison of predicted values with observed results of microcontaminants in blood and biopsy (living animals) and other tissues (dead animals). Determination of the condition of seals by use of general condition-indices and more specific indications for homeostasis and stress by analysis of bloodsamples with special attention for endocrine effects and immunity. Making connections between exposure, accumulation and effects. By comparison with results from analysis of animals from different areas and by use of multivariate statistical methods we will check whether it is possible to find the cause of the effects.

Researcher(s)

Research team(s)

Human exposure, in vitro biotransformation and hepatotoxicity of organophosphate flame retardants. 01/10/2011 - 30/09/2013

Abstract

The main goals are: 1) to characterize most important exposure pathways for humans to OPFRs in the indoor environment and identify the compounds of concern; 2) to investigate the biotransformation of OPFRs using in vitro systems; 3) to develop innovative mass spectrometry-based metabolomic approaches for simultaneous detection of selected OPFRs and the endogenous metabolites (small molecules which are produced by the cell resulting from its normal functions) in exposed human hepatocytes; 4) to identify specific biomarkers (e.g. endogenous metabolites) impacted by exposure to OPFRs in hepatocytes. The project has been already initiated with the development of analytical methods necessary for the completion of the first goal, while procedures for the second goal are currently being developed. The completion of the proposed project will ensure a better understanding of the risk potential of OPFRs to human health provided by in vitro experiments.

Researcher(s)

Research team(s)

Human exposure to new chemicals from indoor environments. 01/10/2011 - 30/09/2013

Abstract

The project aims firstly to characterize the presence, relevance and contribution of substitute phthalates and flame retardants in consumer goods (plastic materials, textiles, etc) and characterization of human exposure pathways (dietary and non-dietary: air, dust) to such chemicals. A general priority list for these new chemicals regarding their presence in indoor dust, air and food samples will be addressed in relation to their emission sources. Afterward, the identification of relevant biotransformation pathways of selected substitute chemicals present in the indoor environment through a combination of in vitro experiments and various mass spectrometry techniques will be the second important research direction of this project. Rat, pooled human liver microsomes and plasma will be used to characterize the metabolism of selected chemicals. Exposure experiments will be conducted with single and mixtures, at various doses relevant for the concentrations measured in indoor air, dust or food samples. Finally, the identification and quantification of parent compounds and their metabolites in human blood and urine samples will be performed in order to validate the results obtained from the in vitro experiments. The utility of non-invasive matrices (hair, nails, saliva) for providing accurate measures of internal exposure to selected new chemicals will also be evaluated.

Researcher(s)

Research team(s)

Development of alternative test systems based on zebrafish embryos for identifying toxic chemicals (ZETOX). 01/09/2011 - 31/08/2015

Abstract

This project represents a formal research agreement between UA and on the other hand the Federal Public Service. UA provides the Federal Public Service research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Biomonitoring samples for chemical analysis of the Belgian part of the European LIFE + project DEMOCOPHES - lot 5. 17/08/2011 - 31/12/2011

Abstract

Biomonitoring of urine samples from mother and child pairs samples for chemical analysis of the Belgian part of the European LIFE + project DEMOCOPHES - lot 5: Chemical analysis of Bisphenol-A. Samples were collected in 2012 and results presented in 2012-2013. Coordinator: VITO

Researcher(s)

Research team(s)

Estimation of brominated flame retardants concentration in biota from extreme regions, such as High Andes Lakes and Argentinean Antarctic Archipelago. 01/07/2011 - 31/12/2011

Abstract

This project represents a formal research agreement between UA and on the other hand Erasmus Mundus. UA provides Erasmus Mundus research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Evaluation pollutants and the quality of samples of silver eels from different European rivers. 01/06/2011 - 01/04/2012

Abstract

This project represents a formal research agreement between UA and on the other hand a private institution. UA provides the private institution research results mentioned in the title of the project under the conditions as stipulated in this contract with the Muséum national d'histoire naturelle.

Researcher(s)

Research team(s)

Development of environmental friendly methodologies for the determination of brominated flame retardants in humans. Estimation of human exposure through analysis of non-invasive samples. 01/06/2011 - 31/08/2011

Abstract

This project represents a formal research agreement between UA and on the other hand Erasmus Mundus. UA provides Erasmus Mundus research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

INFLAME - Indoor contamination with flame retardant chemicals: causes and impacts. 01/01/2011 - 31/12/2014

Abstract

The main research goal is to further understanding of how and to what extent flame retardant (FR) chemicals used in every-day consumer goods and construction materials enter humans and of the risk to health that such exposure presents.

Researcher(s)

Research team(s)

Estimation of drug abuse in Belgium by analysis of wastewater. 01/10/2010 - 30/09/2012

Abstract

This project aims at the development of models to estimate the use of illicit drugs in Belgium by means of the analysis of illicit drugs and their metabolites in wastewater ("sewage epidemiology"). Sewage epidemiology can deliver important and real-time information about local, regional, national and international illicit drug consumption which can be used in addition to classical socio-epidemiological studies to give policy makers a better picture about trends, patterns and hot-spots of illicit drug use.

Researcher(s)

Research team(s)

Time of Flight Mass Spectrometer coupled to Liquid Chromatography system (LC-TOF/MS). 22/07/2010 - 31/12/2015

Abstract

This project represents a formal research agreement between UA and on the other hand the Flemish Public Service. UA provides the Flemish Public Service research results mentioned in the title of the project under the conditions as stipulated in this contract.

Researcher(s)

Research team(s)

Development and validation of micro array derived biomarkers in ecological relevant exposure conditions for the common carp. 01/01/2010 - 31/12/2013

Abstract

The central aim of the proposed research project is the development of microarray derived molecular biomarkers for micro pollutants in the common carp (Cyprinus carpio) and validation of the selected set of biomarker genes under complex environmental relevant conditions. In order to be valuable in environmental risk evaluation the biomarker gene set has to meet several criteria.

Researcher(s)

Research team(s)

Analytical characterisation of mannosylerythritol lipid biosurfactants produced by biosynthesis based on feedstock sources from agro-food industry. 01/01/2010 - 31/12/2011

Abstract

A fermentation based on feedstock sources from agro-food industry for the production of mannosylerythritol lipid biosurfactants (BIOMEL project) yields in a secretion of a complex blend of biomolecules with promising properties in food-, pharmaceutical, cosmetic and domestic housecare applications. The goal of this project is to define detailed protocols of standard procedures for isolation, purification, quantification and characterisation of current and novel MEL's from a complete fermentation broth.

Researcher(s)

Research team(s)

Exposure and metabolism of new brominated flame retardants. 01/10/2009 - 31/01/2012

Abstract

Brominated flame retardants (BFRs) have been used in commercial and household products, with a number of new BFRs (nBFRs) being recently introduced on the market. At this moment, very little is known regarding the environmental fate, food chain transfer, metabolism and toxicological profile of these nBFRs and this warrants additional and systematic research. The present proposal builds on the extensive experience and collaboration network related to BFRs accumulated in my first research mandate. A first objective is the validation of suitable analytical methods for the detection of nBFRs at trace levels in environmental and biological matrices. It further aims at a systematic investigation of the exposure routes, fate and biomagnification potential of nBFRs in representative aquatic and terrestrial food chains. This research will also aim at evaluating the degree and pathways of human exposure to nBFRs. Furthermore, the metabolic pathways of nBFRs in representative species, including humans, will also be investigated. Finally, the project will investigate the metabolic rates for the most important nBFRs. The completion of the proposed project will ensure a better understanding of the accumulation, fate and metabolism of nBFRs in biota.

Researcher(s)

Research team(s)

Physiologically based pharmacokinetic models for the accumulation of microcontaminants and immunological effects in harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena). 01/10/2009 - 30/09/2011

Abstract

Aims: Development of a physiologically based pharmacokinetic model for long-term uptake and accumulation of microcontaminants by seals. Model evaluation by comparison of predicted values with observed results of microcontaminants in blood and biopsy (living animals) and other tissues (dead animals). Determination of the condition of seals by use of general condition-indices and more specific indications for homeostasis and stress by analysis of bloodsamples with special attention for endocrine effects and immunity. Making connections between exposure, accumulation and effects. By comparison with results from analysis of animals from different areas and by use of multivariate statistical methods we will check whether it is possible to find the cause of the effects.

Researcher(s)

Research team(s)

Analysis of pharmaceutical products in wastewater: development, validation and evaluation of a new and innovative model for their (rational) use. 01/01/2009 - 31/12/2012

Abstract

The fundamental aim of this project is to develop and to validate a mathematical model to transform concentrations of the most prescribed and used pharmaceuticals and their metabolites of which the use is known (RIZIV) in waste water in an amount of used pharmaceuticals in Belgium (measured vs. predicted environmental concentrations).

Researcher(s)

Research team(s)

Development of LC-MS methods for the analysis of pharmaceuticals in waste water. 01/11/2008 - 31/10/2009

Abstract

The proposal aims at validating analytical methods based on liquid chromatography-mass spectrometry for the determination of various classes of priority pharmaceuticals in waste water. A first ever screening of these pharmaceuticals in waste water from Flanders will be done. Next, the identification of pharmaceuticals other than the target compounds and the evaluation of the stability of priority pharmaceuticals in waste water will also be investigated.

Researcher(s)

Research team(s)

Evaluation of drug abuse in Belgium by analysis of wastewater. 01/10/2008 - 30/09/2010

Abstract

This projects consists of two parts. In the first part, methods of analysis for the determination of several drugs (cocaine, amphetamines, cannabis,...) and their metabolites in waste and surface water are being developped and validated. In the second part, the concentrations of drugs and metabolites found in watersamples will be used to estimate the abuse of drugs in Belgium.

Researcher(s)

Research team(s)

Human exposure to endocrine disrupting phenolic contaminants. 01/07/2008 - 31/12/2012

Abstract

The proposed project aims at investigating the pathways of human exposure to a class of emerging environmental contaminants, namely, the phenolic endocrine disruptors, such as bisphenol-A. After validating suitable analytical methods, the project aims at assessing the extent of exposure for the Flemish population and importance of each exposure route (e.g. via diet, air, dust, dermal contact). Special attention will be given to children's exposure.

Researcher(s)

Research team(s)

Estimation of the use of illicit drugs through analysis of waste water. 01/10/2007 - 30/09/2008

Abstract

This projects consists of two parts. In the first part, methods of analysis for the determination of several drugs (cocaine, amphetamines, cannabis,...) and their metabolites in waste and surface water are being developped and validated. In the second part, the concentrations of drugs and metabolites found in watersamples will be used to estimate the abuse of drugs in Belgium

Researcher(s)

Research team(s)

Analysis of higher brominated polybrominated diphenyl ethers (PBDEs), including the fully brominated BDE 209. 23/07/2007 - 17/08/2007

Abstract

Researcher(s)

Research team(s)

Cocaine and its metabolites in Belgian waste and surface water. 01/04/2007 - 31/03/2008

Abstract

Researcher(s)

Research team(s)

Brominated flame retardant and perfluor compounds in Flanders. 15/03/2007 - 14/06/2009

Abstract

Researcher(s)

Research team(s)

Contamination of eggs from chickens kept in non-professional environments. 01/02/2007 - 31/01/2008

Abstract

Researcher(s)

Research team(s)

Characterization of metabolisation patterns and pathways for two groups of contaminants (PBDEs and PCBs). 01/02/2007 - 31/01/2008

Abstract

The proposed project aims firstly at optimizing and validating analytical methods based on liquid chromatography-mass spectrometry (LC-MS) for the determination of metabolites of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in biological samples. Next, the project aims at identifying and predicting metabolisation pathways of PBDEs and PCBs in various top-predators.

Researcher(s)

Research team(s)

Emerging environmental contaminants: analytical methods and human exposure. 01/01/2007 - 31/12/2008

Abstract

The proposed project aims firstly at optimizing and validating analytical methods for the determination of emerging environmental contaminants, such as personal care products and phenolic chemicals, in human samples. An innovative part will be the assessment of human exposure to these contaminants, together with investigation of their major routes of exposure (food, air, particles, ¿).

Researcher(s)

Research team(s)

Hydroxylated metabolites of polybrominated diphenyl ethers (HO-PBDEs): analytical and environmental issues. 01/01/2007 - 31/10/2007

Abstract

The proposed project aims at optimizing and validating analytical methods based on gas chromatography-mass spectrometry for the determination of the hydroxylated metabolites of polybrominated diphenyl ethers (HO-PBDEs) in biological samples. Next, it aims at identifying and predicting metabolisation pathways of PBDEs in various terrestrial top-predators and at investigating relationships between metabolites and parent compounds.

Researcher(s)

Research team(s)

Exposure, food chain transfer and metabolism of brominated flame retardants. 01/10/2006 - 30/09/2009

Abstract

Researcher(s)

Research team(s)

Analytical methodologies for the determination of the flame retardant hexabromocyclododecane in biological and environmental samples. 01/05/2005 - 31/12/2006

Abstract

The proposed project aims at optimizing and validating analytical methods for the determination of the flame retardant hexabromocyclododecane (HBCD) in environmental and biological samples. The technical HBCD used by the industry is not a pure substance but consists of different isomers, of which a-, b- and g-HBCD are the most abundant. Liquid chromatography coupled with mass spectrometry (LC/MS) will be used as analysis technique for the determination of individual HBCD isomers.

Researcher(s)

Research team(s)

Evaluation of the distribution, occurrence and fate of persistent organic pollutants (POPs) in agricultural products and wildlife in South Africa. 01/01/2005 - 31/12/2006

Abstract

Researcher(s)

Research team(s)

An integrated study on the effects of persistent organochlorine pollutants (POPs) in insectivorous songbirds, with special attention to their possible endocrine disrupting role. 01/01/2004 - 31/12/2007

Abstract

Researcher(s)

Research team(s)